ATESST2 D4.1.1 Grant Agreement 224442

71! \TESST B

Information Society

Technologies

Grant Agreement 224442

Advancing Traffic Efficiency and Safety through Software
Technology phase 2 (ATESST2)

This document is the specification of the domain model for EAST-ADL.

The EAST language was originally developed in the EAST-EEA project. In the ATESST and
ATESST2 projects, the language was further refined and harmonized with other modeling
approach development efforts in the automotive industry such as AUTOSAR.

The domain model and UML2 profile of EAST-ADL is defined in two steps: First the domain model
is defined, capturing only the domain-specific needs of the language without adding the UML2
details. The basic concepts of UML2 are used for this purpose, such as classes, compositions,
and associations. Second, based on the domain model, a UML2 profile for the domain model is
defined, specifying stereotypes with properties and constraints. The UML2 profile is specified in a
separate document with an associated XMl file ready for use in UML2 tools.

This specification and related material are available from the www.atesst.org website.

Comments on the content of this document are welcome and should be directed to
coordinator@atesst.org.

Report type Deliverable D4.1.1

Report name EAST-ADL Domain Model
Specification

Dissemination level PU (Public)
Status Final
Version number 2.1

Date of preparation 2010-06-30

©2008-2010 The ATESST2 Consortium i

http://www.atesst.org/
mailto:coordinator@atesst.org

ATESST2 D4.1.1 Grant Agreement 224442

AUTHORS

Contributors EAST-ADL version 2.1

Centro Ricerche Fiat: Fulvio Tagliabo’, Sandra Torchiaro
Continental Automotive: Andreas Abele, Philippe Cuenot, Friedhelm Stappert,

Frank Hagl, Stefan Kuntz

Delphi/Mecel: Anders Sandberg
Mentor Graphics: Rolf Johansson
Volvo Technology AB: Lars-Olof Berntsson, Hans Blom, Henrik Lonn,

Ramin Tavakoli Kolagari

VW/Carmeq: Helko Glathe, Matthias Weber
CEA-LIST: Sébastien Gérard, David Servat
Kungliga Tekniska Hogskolan: Matthias Biehl, Dediu Chen, Lei Feng,
Carl Johan Sjostedt, Martin Térngren
Technische Universitat Berlin: Mark-Oliver Reiser
University of Hull: Nidhal Machmoud, Yiannis | Papadopoulos,

David Parker, Martin Walker

The ATESST2 Consortium

Volvo Technology Corporation (S) VW/Carmeq (D) Centro Ricerche Fiat (1)
Continental Automotive (D) Delphi/Mecel (S)
Mentor Graphics Hungary (H) CEALIST (F)

Kungliga Tekniska Hogskolan (S) Technische Universitat Berlin (D) University of Hull (GB)

©2008-2010 The ATESST2 Consortium ii

E/AST-ADL

EAST-ADL
Domain Model Specification

Version 2.1
2010-06-30

EAST-ADL Domain Model Specification version 2.1

Revision History

Version Date Reason
1.02 2004-06-30 | EAST-ADL developed in the ITEA EAST-EEA project.
2.0 2008-03-20 | EAST-ADL2 developed in the EC FP6 project ATESST.

http://www.atesst.org/home/liblocal/docs/EAST-ADL-2.0-
Specification_2008-02-29.pdf

2.1 2010-06-30 | Final release from the EC FP7 project ATESST2.

Copyright © 2000-2004, AUDI AG

Copyright © 2000-2004, BMW AG

Copyright © 2000-2004, 2008-2010, Centro Ricerche Fiat
Copyright © 2007-2010, Continental Automotive
Copyright © 2000-2008, DaimlerChrysler AG

Copyright © 2006-2010, Delphi/Mecel

Copyright © 2000-2008, ETAS GmbH

Copyright © 2006-2010, Mentor Graphics Hungary
Copyright © 2000-2004, OPEL GmbH

Copyright © 2000-2004, PSA

Copyright © 2000-2004, Renault

Copyright © 2000-2004, Robert Bosch GmbH

Copyright © 2000-2007, Siemens VDO Automotive SAS
Copyright © 2000-2004, Valeo

Copyright © 2000-2004, Vector

Copyright © 2006-2008, Volvo Car Corporation
Copyright © 2000-2010, Volvo Technology AB
Copyright © 2006-2010, VW/Carmeq

Copyright © 2000-2004, ZF

Copyright © 2000-2010, CEA-LIST

Copyright © 2000-2004, INRIA

Copyright © 2006-2010, Kungliga Tekniska Hogskolan
Copyright © 2000-2004, LORIA

Copyright © 2000-2004, Paderborn Univerisity-C-LAB
Copyright © 2000-2004, Technical University of Darmstadt
Copyright © 2000-2010, Technische Universitat Berlin
Copyright © 2008-2010, University of Hull

©2008-2010 The ATESST2 Consortium 2 (227)

http://www.atesst.org/home/liblocal/docs/EAST-ADL-2.0-Specification_2008-02-29.pdf
http://www.atesst.org/home/liblocal/docs/EAST-ADL-2.0-Specification_2008-02-29.pdf

EAST-ADL Domain Model Specification version 2.1

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

This document describes a language specification developed by an informal partnership of
vendors and users, with input from additional reviewers and contributors. This document does not
represent a commitment to implement any portion of this specification in any company’s products.
See the full text of this document for additional disclaimers and acknowledgments. The information
contained in this document is subject to change without notice.

This specification is provided by the copyright holders and contributors "as is" and any expressed
or implied warranties, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose are disclaimed. In no event shall the copyright owner or
contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential
damages (including, but not limited to, procurement of substitute goods or services; loss of use,
data, or profits; or business interruption) however caused and on any theory of liability, whether in
contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use
of this specification, even if advised of the possibility of such damage.

©2008-2010 The ATESST2 Consortium 3 (227)

EAST-ADL Domain Model Specification version 2.1

Table of Contents — Overview

REVISION HISTOMY ... ettt ettt e oo h bt e e e e h bt e e e ek b et e e e aab et e e e bbbt e e e ambe e e e e anbe e e e e anbneeeaannnas 2
USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES......... s 3
(= Lol I i ol 8o (o] o E T PP P TP PP PPPPPPPPPPRPTN 15
N IV o Vo U F= To [o 1 =11 o PSR 17
P o] o] (=Y T o] £ F TP PP PTPPT PP 19
Part II StrUCTUIAl CONSIIUCTSeeiiiiiiiiiitiiee ettt e et e e r et e e s e e e st e e e e sann e e e e snnre e e e snneeeennreeeenan 20
ISV (=] 1011 [oTo [g Vo O T SO U P PP PUPRR PP 21
O o LU £ =11Y/ 0o L] 1 o PSPPIt 26
5 VehiCleFeatUreMOTEIINGooiiiiiiiiiiii ettt ekt e e et e e e nnb e e e e nbae e e e nneas 36
6 FUNCHONMOUAEING ..o 41
A o F= 10 1= T L= 1Y ToTo =] T o PO PO PU PP PUPPRPPPI 57
S I S AT (] 010 1 T=T o | SO PP PP 67
Part [BENAVIOTAl CONSIIUCESuvtiiiiiiiiee ittt ettt e et e e e st e e e s be e e e e sabb e e e e ettt e e e abbeeeeabreeeeanes 69
S = T Fo Y (o] OO T PO P PP PT PRSPPI 70
PAIT IV VAIADIILY ...ttt ettt e ettt e e ot bt e e e sabb e e e e aabaee e e sabbeeeeabneeeeanes 78
10 RV 2= U= Lo 11 P PPPPPPPPN: 79
e LA Y S Lo (11T o 1= 1 OO UOTUPPPPPPRPN 93
11 REQUINEMENTS ... 94
12 USECASES ...tteeeieeee ittt e e e e ettt e e oo oottt e e oo oottt e e e e e ottt e e e e e o r e et e e e a e e e e et e e e a e s 105
13 VerifiCatioNValIALIONoouiiiiiit e et 110
14] (= ol g = gL [PSPPSR PSR 117
o T AV I T 0211 o PR PUPP PSPPI 120
15 L1101 o PR PST 121
16 0T aTe [Ofe] 1 = 11 o £ TP TP UOTPUPRUPTN 128
17 B BN S e 137
Part VII DEPENTADIIITY ..ottt e ettt e e e e e s bbb e e e e e e e e e e nb b b e e e e e e e e e e annreereeas 140
18 [1= 0 1= o o o 11 SRS 141
19 = 0] 41V (oo L= T PP PP PP PP PP OUPRPPPPPPRPTN 149

©2008-2010 The ATESST2 Consortium 4 (227)

EAST-ADL Domain Model Specification version 2.1

20 SAfEIYCONSITAINTSitiiie ettt et e e s bbbt e e s bbbt e e sk b e e e e s bt e e e e s aabb e e e s anbne e e s annneee s 159
21 SF= =30V =0 {81 €= 1 =T o SRR 162
22 ST 1 (=110 L1 O PO P PP PTPPPTPPPIN 165
Part VIII GENEIIC CONSIIAINTSiviieiiiiiitie ettt et e et si e e e s e e b e e s e e s re e e nnneesare e e nnneesnreeennnes 170
23 GENETICCONSITAINTStteeee ittt ettt et e e sk e e e e s bbb et e ekt et e skt et e e s bbe e e e e anbe e e e s anbbe e e e nnnneee s 171
L L D L1 = K1 (0[SO PPTP PP 175
24 (D2 1= 14 61T PP PP PP PPPPP 176
25 =T g T=T] PP PO PO PPPRRR 184
26 USEIAIIDULES ...ttt ettt e e sttt e e s bb et e e sk bt e e e e kb e e e e abbe e e e abbeeeeabbeeeeaaes 192
Pt X ANNEXESttt e e e e e e e e 197
27 ANNEX AL NOTALION ...t e et e e e et et e e e st b et e e e e st et e e e anbb e e e e anbeeeeennens 198
28 ANNEX B NEBEUSeeiiiieie ettt e et e e e et e e et e e e e e e e et e e e e s 202
29 ANNEX C: BENAVIOTCONSIIAINTS.viiieiiiiiee ettt et e e e it e e e anb e e e e sabne e e e enens 209
30 106 [TP PP TP TP PPPPPPPPTN 219

©2008-2010 The ATESST2 Consortium 5 (227)

EAST-ADL Domain Model Specification version 2.1

Table of Contents - Complete

(= Lol I i ol 8o (o] o EO TP PP PP PP OPPPPPPOPPRPN 15
N IV o Vo U F= To [o 1 =11 o PR 17
11 LeVEIS OF FOIMI@IISIT ...coiiiiiiiiiiii ettt ettt s bbbt s ket e e s bt e e s aab b e e e s anbn e e e s annneee s 17
1.2 SPECIfICALION SUCTUIEuiiiii it e s e e e s e e e e e e e e s e saabaeereeeeesssssnrenaeeeeeeeaannnes 17
121 OVEIVIBW ...ttt ettt etttk 4 bttt o4kttt e 4Rkt e 4 e R R et e e eab et e e e st bt e e e nbe e e e e nbre e e e nnnnas 17
1.2.2 ElemMENT DESCIIPIIONSccitieeee ittt ettt sttt ekt e e s bbb e e s st et e s anbb e e e s annreee s 17

A\ oo (Y T o] £ F TP P PP PUPPRPPP 19
Part II StrUCTUIAl CONSIIUCTSeeiiiiiieiiiiiiee ettt e st e e st e e e s et e e st e e e e aann e e e e snneeeeanneeeesanneeeenans 20
ISV (=] 1011 (oo [g T O PP O VPP PUPRR P 21
3.1 OVBIVIBW ...ttt ettt e ookt e 4 et e 4 et o4 s e e 4R et o4 e s Rt e e e e et e e e r e e e e e e e e e e nrr e e e e nnnns 21
3.2 ElEMENT DESCIIPTIONS ...ce e itteeee ittt ettt ettt e e sttt e e s bbbt e e skt e e s bbbt e e s nbb e e e e anbbeeesannreeeas 21
3.2.1 AnalysisLevel (from SystemModeling) «atpStructureElementcccccoeveeiiiiiiiciieiiiieieeeeeeennn 21
3.2.2 DesignLevel (from SystemModeling) «atpStructureElement»cccc, 22
3.2.3 ImplementationLevel (from SystemModeling) «atpStructureElement».......................... 23
3.24 SystemModel (from SystemModeling) «atpStructureElement»cccccoooeiiiiii . 24
3.25 VehicleLevel (from SystemModeling) «atpStructureElementcccccooeeieiiiiiiiiiieieieieceeeeennn 24

4 FeatUreMOdEeliNgcoooei i 26
4.1 OVEIVIBW ...ttt ettt ettt ookttt o4kttt o4k kbt e 4Rk et e 4R Rttt e 4 em kbt e e ek b e e e e e bbb e e e e nbe e e e e nbeeeeennneas 26
4.2 Element DeSCHPLONS ... 26
42.1 BindingTime (from FeatureModeling)cooiiiiiiiiiii e 26
422 BindingTimeKind (from FeatureModeling) «enumeration’cccccuueeeiniieieiniieeenniieee s 27
423 Feature (from FeatureModeling) «atpStructureElementscccoviiiiiiiiiiice e, 29
424 FeatureConstraint (from FeatureModeling)cooiiiiiiiiiiiieie e 30
425 FeatureGroup (from FeatureModeling)ccoooueiiiiiiiiieiie e 31
4.2.6 FeatureLink (from FeatureMOdeliNg)cueeiiiiiiiiiiiie e 31
4.2.7 FeatureModel (from FeatureModeling) «atpStructureElementscccceiviiiiiniieennienn, 32
4.2.8 FeatureTreeNode (from FeatureModeling) {abstract}..........ccooviiiiiiiiiin e, 33
429 VariabilityDependencyKind (from FeatureModeling) «enumeration»c.cccceeeviieeeeinieenenne 34

5 VehiCleFeatUreMOTEIINGcoiiiiiiiiiiiiii ettt st ettt e s et e e e et et e e e nnbee e e e nbaeeeennnees 36
5.1 OVBIVIBW ...ttt etttk et o4kt e 4 st e 4 s et e 4Rk et e 4o s bt e e e st e e e s bt e e e s et e e e nbn e e e e nnnes 36
5.2 ElEMENT DESCIIPLIONS ... ittt ittt ettt ettt e sttt e e s bt e e e s bbbt e e s bbe e e e s bbe e e e s nnb e e e s anbbeeesanneeeens 36
5.2.1 DeviationAttributeSet (from VehicleFeatureModeling).........cooiiiiiiieiiiiiiiiiiieeee e 36
5.2.2 DeviationPermissionKind (from VehicleFeatureModeling) «enumerations...............ccccuveeeeeennn. 38
5.2.3 VehicleFeature (from VehicleFeatureModeling)ccooooi i 38

©2008-2010 The ATESST2 Consortium 6 (227)

EAST-ADL Domain Model Specification version 2.1

I V[g Tt o] 011Y [oTo [=1 11T RO TP PO PP PP UPTPPP PP 41
6.1 OVEBIVIBW ...ttt ettt ettt ekt e Rt e o R £ oo Rt e e R R e e Rt e 1R R e e e st e am Rt e e R et e nn R e e enne e e arne e anr e e e nnne s 41
6.2 ElEMENT DESCIIDTIONS ...ce e iutteee ettt ettt ettt ettt e e st e e s bbb et e s bbbt e e s bbe et e s nbe e e e e anbneeesannreeens 42

6.2.1 AllocateableElement (from FunctionModeling) {abstract}.........cccccccviiiiiiiieiee e 42
6.2.2 Allocation (from FUNCtioNMOdeliNg)uvveiiieeiiiiiiiieee e e e e e 43
6.2.3 AnalysisFunctionPrototype (from FunctionModeling)cccuvieiveeiiiiiiiiiieece s 43
6.2.4 AnalysisFunctionType (from FunctionModeling).........cueeeeiiiiiiiiiiie e 44
6.2.5 BasicSoftwareFunctionType (from FunctionModeling)coccviieeieeeiiiiiiiiiecee e 44
6.2.6 ClientServerKind (from FunctionModeling) «enumeration»ccccceeeeviiciivieeeeeeescciiieeeeeeenn 45
6.2.7 DesignFunctionPrototype (from FunctionModeling) ... 45
6.2.8 DesignFunctionType (from FunctionModeling) ..., 46
6.2.9 EADirectionKind (from FunctionModeling) «enumeration»..............ccccceeeeeiieiieeeeeeee, 46
6.2.10 FunctionalDevice (from FunctionModeling)ccoovvviriiiiiii 47
6.2.11 FunctionAllocation (from FunctionModeling)...........coooviriiiiii, 47
6.2.12 FunctionClientServerinterface (from FunctionModeling) «atpType»cccccevvvvviiiiiiiiieneneeenn. 48
6.2.13 FunctionClientServerPort (from FunctionModeling).........cccccoeviviiiiii 48
6.2.14 FunctionConnector (from FunctionModeling) «atpStructureElement»...................cccceoeeeee. 49
6.2.15 FunctionFlowPort (from FunctionModeling)cooooririiiri, 50
6.2.16 FunctionPort (from FunctionModeling) {abstract} «atpPrototype»...........ccccccevvviiiiiiiiinn, 51
6.2.17 FunctionPowerPort (from FunctionModeling)coovviiiiiiiiii 51
6.2.18 FunctionPrototype (from FunctionModeling) {abstract} «atpPrototype»ccccccevevinnnnnnn.n. 52
6.2.19 FunctionType (from FunctionModeling) {abstract} «atpType»........ccccceiiiiiiiiiiiiiii, 52
6.2.20 HardwareFunctionType (from FunctionModeling) ..o, 54
6.2.21 LocalDeviceManager (from FunctionModeling) ... 54
6.2.22 Operation (from FunctionModeling)cooviiiiiii i 55
6.2.23 PortGroup (from FunctionModeling)cooveriiiiiiiiii 55

7 HardwareModeling........coooo i 57
7.1 OVEIVIBW ...ttt ekttt o ket e 4kttt e 4k kbt o4 st bt e e 4R bttt e 4 em kb et e e ek b et e e ekt b e e e e bbb e e e e nbee e e e nnnnas 57
7.2 (==Y g Lot oLl DS o g o] 1] TP SPTP PR 57

7.2.1 Actuator (from HardwareModeliNng)........c.ueeiiiiiiiiiiiiiee et 57
7.2.2 AllocationTarget (from HardwareModeling) {abstract}...........ccccoiiiiiiiiii e 58
7.2.3 CommunicationHardwarePin (from HardwareModeling)cccoceiiiiiiiiiiieeiice e 58
7.2.4 HardwareComponentPrototype (from HardwareModeling) «atpPrototype»c.ccccevevrnneen. 59
7.2.5 HardwareComponentType (from HardwareModeling) «atpTyPes»........cccovcvveeeiriieeenniiieeenninneen 59
7.2.6 HardwareConnector (from HardwareModeling) «atpStructureElement»ccccccovcvveernnnenen. 60
7.2.7 HardwarePin (from HardwareModeling) {abstract} «atpStructureElement»ccccccovneeen. 60
7.2.8 HardwarePinDirectionKind (from HardwareModeling) «enumeration»cccccevvvvveeninnenen. 61
7.2.9 HardwarePinGroup (from HardwareModeling)ccuuvriieeeiiiiiiiiiieeee e eeeee e 62
7.2.10 IOHardwarePin (from HardwareMOdeling)cceeeeiiieiiiiiiiiee e e e s e e e e ee e e e 62

©2008-2010 The ATESST2 Consortium 7 (227)

EAST-ADL Domain Model Specification version 2.1

7.2.11 10HardwarePinKind (from HardwareModeling) «enumeration»ccccecueeeeriiereesnineeennnne. 62
7.2.12 LogicalBus (from HardwareModeling) «atpStructuredElements............cccoocvveiiineiiiiieeeennn, 63
7.2.13 LogicalBusKind (from HardwareModeling) «enumMeration»cccoccuereiriiereniniiieeesniieee e 64
7.2.14 Node (from HardwareMOodeling)ueeeiiiiieiiiii et 64
7.2.15 PowerHardwarePin (from HardwareModeling)coocueieiiiiiiiiiiiiee et 65
7.2.16 PowerSupply (from HardwareModeling)coocuuiiiiiiiiiii e 65
7.2.17 Sensor (from HardwareMOodeling)..........cooiuriieiiiiiieiiie et 66

I S AV T o] a1 1 T=] o OO PP P PP P PTPRP PP 67
8.1 OVEBIVIBW ...ttt ettt ettt h e E et e R e e e Rt e e s R e e e Rt e 4a R e e se e e e n Rt e e R e e e nn R e e anne e e nrn e e nnreeennne s 67
8.2 ElEMENT DESCIIPTIONS ...ce e itteeee ittt ettt ettt e e sttt e e s bbbt e e skt e e s bbbt e e s nbb e e e e anbbeeesannreeeas 67
8.2.1 ClampConnector (from Environment) «atpStructureElement»cccc . 67
8.2.2 Environment (from ENVIroNmMeNnt) ..., 68
Part [BENAVIOTAl CONSIIUCESveeiiiiriiee ettt e et e e s e e e s e e e e s e e e s s anre e e e snneeeennneeeennns 69
S = T T Y [o] P PO PP PUPPTPPP 70
9.1 OVBIVIBW ...ttt ettt ettt e okt e 4 et o4 s e e 4Rt o4 e s Rt e e e et e e e nrn e e e e et e e e nrn e e e e nnns 70
9.2 ElEMENT DESCIIPTIONS ...eei ettt ittt ettt ettt e e sttt e s bbbt e e s bbbt e e s bbbt e e s nbb e e e s aabneeesannreeens 71
9.2.1 Behavior (from Behavior) ... 71
9.2.2 FunctionBehavior (from BEhavior) ... 72
9.2.3 FunctionBehaviorKind (from Behavior) «enumeration»...............cccccceiiiii 73
9.24 FunctionTrigger (from Behavior)...........ccoo oo 74
9.25 Mode (from BENAVION)ccooi e 75
9.2.6 ModeGroup (from BEhavior)oooe oo 76
9.2.7 TriggerPolicyKind (from Behavior) «enUMErationscccccceeeeeeereiiniiiieesese e e 76

PArt IV VAKTADIILYueiiieiii s 78
10 RV LA o] 1 PRSPPSO PRSPPI 79
LO.1 OVEIVIEW . ..eeeiiiiieieeee ettt ettt ettt e skt e e 4kt e 4 et o4 a et o4 e s et o4 ek et e e e s et e e e b et e e e s et e e e nrne e e e nanns 79
10.2 EIEMENE DESCIIPLIONSeiiiiiiiie ittt ettt ettt e e bt e e e e bt e e e bt e e e e e nb e e e e e nbaeeeennnnes 81
10.2.1 ConfigurableContainer (from Variability) ..o 81
10.2.2 ConfigurationDecision (from Variability) ... 82
10.2.3 ConfigurationDecisionFolder (from Variability)c...eeeiiiiiiiiii e 84
10.2.4 ConfigurationDecisionModel (from Variability) {abstract}cccceeiiiiiii e, 84
10.2.5 ConfigurationDecisionModelEntry (from Variability) {abstract}ccccooiiiiiiiiiin 85
10.2.6 ContainerConfiguration (from Variability) ... 86
10.2.7 FeatureConfiguration (from Variability)ccooooiiiiiiii e 86
10.2.8 InternalBinding (from Variability)coooiueieiiiii e 87
10.2.9 PrivateContent (from Variability)cooiiiiiiiiii e 88
10.2.10 ReuseMetalnformation (from Variability) ... 88
10.2.11 SelectionCriterion (from Variability) ..o 89

©2008-2010 The ATESST2 Consortium 8 (227)

EAST-ADL Domain Model Specification version 2.1

10.2.12 Variability (from Variability)oouiiioiii e 89
10.2.13 VariableElement (from Variability)cc.eoeoiiiiioi e 90
10.2.14 VariationGroup (from Variability)cocueeiiiiiii e 91
10.2.15 VehicleLevelConfigurationDecisionModel (from Variability)cccccoviiiiiiiiiiiiinieeeee, 91

PArt V REQUITEIMEINTS ...ttt ettt e ettt e e ot e e e e st e et e e sa ket e e e aab e et e e abbe e e e abb e e e e ebbneeeabreeeennn 93
11 =T o [1= 0 =T o] £ PPEE 94
I R R @Y= Y SO PU P PP PTPPPPOP 94
7 1 1= dT=T o 1o T o] (0] £ PSSR 95
11.2.1 DeriveRequirement (from REQUIFEMENTS)c.cuuriieiiiiiiieiiiieie ittt 95
11.2.2 OperationalSituation (from REQUIFEMENES)uviiiiiiiiieiiiiiie it 96
11.2.3 QualityRequirement (from REQUIFEMENTS)ccuuuiieiiiiiiieiiiiiee ettt 96
11.2.4 QualityRequirementKind (from Requirements) «eNUMErationcccovcvveeeinvreeenniineeenniineen 97
11.25 Refine (from REQUIFEMENTS)ueiiiiiiiiiieiiie ettt e e e e saenee s 98
11.2.6 Requirement (from REQUIFEMENTS)ciiiiuuiiiiiiiiie ittt ettt ettt e e e e e sneneee s 98
11.2.7 RequirementsContainer (from ReqUINEMENTS)cocuriieiiiiiieiiiie e 99
11.2.8 RequirementsLink (from REQUINEMENTS)ccciiuiiiiiiiiiie it 100
11.2.9 RequirementsModel (from REQUINEMENES).......cuuiiiiiiiiieiiiiie et 101
11.2.10 RequirementSpecificationObject (from Requirements) {abstract}cccccevvieiiiiiienens 101
11.2.11 RequirementsRelatedInformation (from RequiremMents)cccceevvieeiiiiieee e 102
11.2.12 RequirementsRelationGroup (from ReqUIrEMENTS)ocuveeiiiiiiieiiiiiee e 102
11.2.13 RequirementsRelationship (from Requirements) {abstract}cccceviieiiiiiiiieeee 103
11.2.14 Satisfy (from ReQUINEMENTS)ueiiiiiiiiii ittt e e 103

12 USECASES ...tteeiieeee ittt e e e ettt e e oo oottt e e oo oo e et e e e e e o e et e e e e e e e e et e e e e e e r e et e e e s e s 105
L12.1 OVEBIVIEWeeeieeiiieee ettt ettt o e ettt e oo et e oo e et e e e as et e e e ee et e e e aa R et e e e an R et e e e anne e e e e e nnr e e e e nr e e e e 105
12.2 EIeMENt DESCHIPLIONScoiiiitiiiei ittt ettt ettt e bt e e e s bt e e e aabe e e e e anbbe e e e anbbeeeeannees 105
12.2.1 ACtOr (from USECASES) ...ccoee e 105
12.2.2 Extend (from USECASES)ccoeeeie e, 106
12.2.3 ExtensionPoint (frOmM USECASES).....cccuiiiiuutiiiieieeeiaiitteeie e e ettt e e e e e aaeb e e e e e e e e s anbbaeeeaaaeaas 107
12.2.4 INCIUdE (FrOmM USECASES) ...cciiiiuiiiiiieee ettt ettt et e ettt e e e e e s st b e e e e e e e e s e nnbbaeeeaaeeeas 107
12.2.5 RedefinableElement (from UseCases) {abStract}..........ccccoiiiiiiiiiiiiiiiiiiieeeee e 107
12.2.6 USECASE (ffOM USECASES)uuuieiiiiieeeiiiiiteiit et e e e ettt e e e e e s ettt e e e e e e s s anbbeeeaa e e e s annbbaeeeaaaeeas 108

13 VerifiCatioNValIALIONooiiiiiiii et 110
G T @Y= YT PSPPSR 110
13.2 EIEMENE DESCHIPHONSceiiiieiiiittit ittt ettt e e e e e ettt e e e e e e e nbb b et ee e e e e e s anbbbbeeeeaeeeeannnreneeas 111
13.2.1 VerificationValidation (from VerificationValidation)cccccoriiiiiiniiieeiie e 111
13.2.2 Verify (from VerificationValidation)............c.ueuiiiiiriiiiiie e 112
13.2.3 VVActualOutcome (from VerificationValidation)ccccceeiviiiiiiiiiiee e 112
13.2.4 VVCase (from VerificationValidation).............ceuieeiiiiiiiiiiieie e s e e e e 113

©2008-2010 The ATESST2 Consortium 9 (227)

EAST-ADL Domain Model Specification version 2.1

13.2.5 VVintendedOutcome (from VerificationValidation)ccccceviiiiiiiiiiiiiiie e 114
13.2.6 VVLog (from VerificationValidation)cooiiiiiiiiiie et 114
13.2.7 VVProcedure (from VerificationValidation)ccueiiiiiiiiiiiii e 115
13.2.8 VVStimuli (from VerificationValidation)cceviiiiiiieiiiiiee e 116
13.2.9 VVTarget (from VerificationValidation)..............ccuviiiiiiiiiiiie e 116

14 1] (= ol g = VgL [T PP PP PP P PP PPPPPPP 117
I R @ Y= V1= PP PP R PPPPPRRPRI 117
14.2 EIeMENt DESCHIPTONSceiiitiiiei it ettt et e et e e e ab et e e e s br e e e e aabe e e e e anbr e e e e anbneeeeannns 117
14.2.1 RIFArea (from Interchange) {abStract}ccccceeeiiiiiiiiic e 117
14.2.2 RIFExportArea (from Interchange) ... 118
14.2.3 RIFImportArea (from INterchange)..........ccooo oo 118
PAIT VI TIMHNG -ttt s 120
15 LI 0011 O O PP P PP PPPPRP 121
T R @Y =T YT PRSP EPP PRSP 121
15.2 EIeMENt DESCHIPLONSciiiiiiieiei ittt ettt ettt e et e ettt e e e st et e e e aabe e e e e anbe e e e e anbbeeeennnns 121
15.2.1 Event (from Timing) {abStracCt} ..., 121
15.2.2 EventChain (from TimiNg)cccooieiiiiee e 122
15.2.3 ExecutionTimeConstraint (from TimMiNg)cccoeeieeiieiii i, 123
15.2.4 PrecedenceConstraint (from Timing) ... 124
15.2.5 TimeDuration (from Timing)ccooiiiiiiii i, 125
15.2.6 Timing (from TimiNg)......ccoooiiiiiiii e 126
15.2.7 TimingConstraint (from Timing) {abstract}..............cccc i 127
15.2.8 TimingDescription (from Timing) {abstract}cccc 127

16 BN 1T e [0 1 1=V €= PPPPPPPRt 128
ST R @Y =T Y T PO PP PP 128
16.2 ElemMent DESCIIPUONSuuiiiii s 129
16.2.1 AgeTimingConstraint (from TimiNgCONSIIAINTS)........c.uutiiiiiiieiiiie e 129
16.2.2 ArbitraryEventConstraint (from TimingCONSIrAINTS)oocuiieiiiiiieeiiieie e 130
16.2.3 DelayConstraint (from TimingConstraints) {abStract}cccooiiiiiiiiiiiie e, 130
16.2.4 EventConstraint (from TimingConstraints) {abStract}cccviiiiiiiii i, 132
16.2.5 InputSynchronizationConstraint (from TimingCoNSraNtS)ccevriiireiiiiiie e 132
16.2.6 OutputSynchronizationConstraint (from TimiNgCONSEIaiNtS)coccceveriiiiieiiiiiie e 133
16.2.7 PatternEventConstraint (from TimMINGCONSIIAINTS)ccoiiiiieiiiiiie e 134
16.2.8 PeriodicEventConstraint (from TimINGCONSIrAINTS)........cooiuiieiiiiiie e 135
16.2.9 ReactionConstraint (from TiIMINGCONSIIAINTS).......ccoiiuuiiiiiiiiie i 135
16.2.10 SporadicEventConstraint (from TimingCoNSraiNtS)coccuveieiiiiiieiiiiiee e 136

17 T PP OO PO PPPRR 137
L7.1 OVEIVIEBWeeeieeiiiee ettt ettt e ookt e e ookttt oo ook bt oo e e a bt e e e ek b et e oo ah b et e oo ah b et e e e an b et e e e anb et e e e anb e e e e s anbneeeeannns 137

©2008-2010 The ATESST2 Consortium 10 (227)

EAST-ADL Domain Model Specification version 2.1

17.2 EIeMENt DESCHIPLONSceiiiitiiiei ittt ettt e e et e e e i bt e e e st et e e e aabe e e e e aabe e e e e anbneeeeannnes 137
17.2.1 EventFunction (from EVENTS)uuiiiiiiiiiiiiiiieec et e e s r e e e e e s st e e e e e e e s s nnraneeaaeeean 137
17.2.2 EventFunctionClientServerPort (from EVENLS)........ccccuvviiiiee it 138
17.2.3 EventFunctionClientServerPortKind (from Events) «enumeration»............cccccceeeeviicvvnneneeenn. 138
17.2.4 EventFunctionFIowPort (from EVENIS)uuuiiiiiiiiiiiiiieec e e e e e e e 139

T YA LI T=T 1= o o o1 USSR 140
18 DEPENUADIITYeeeeee e e e bt e e s b e e e st e e e a b e e e e e 141

S T R @ Y= V1= PP RP P PPPPPPRPRI 141

18.2 EIEMENt DESCHIPLIONSceeiiitieieiiitiie ettt e ettt e e et e e e e st e e ekt et e e e asbe e e e e aabe e e e e anbreeeeannns 142
18.2.1 ControllabilityClassKind (from Dependability) «enumeration».................cccoeeeeeiii, 142
18.2.2 Dependability (from Dependability) ..o, 143
18.2.3 DevelopmentCategoryKind (from Dependability) «xenumeration»ccccceeeeeeeinennnennn. 143
18.2.4 ExposureClassKind (from Dependability) «enumeration»cccccooeeiiiiie, 144
18.2.5 FeatureFlaw (from Dependability) ... 145
18.2.6 Hazard (from Dependability) ... 145
18.2.7 HazardousEvent (from Dependability)...........ccccoo oo, 146
18.2.8 Item (from Dependability) ... 147
18.2.9 SeverityClassKind (from Dependability) «enumeration»cccccoeeiiiii e, 147

19 = 0] 41V [o = PP PP UUPRPPPPPPRPT 149

S TR R @Y =T YT T PRSP RP PRSP 149

19.2 ElemMEnt DESCIIPONSuuiiiiii s 150
19.2.1 Anomaly (from ErrorModel) {abstract} «atpPrototype»ccoucveieiiiiiieiiiiiie e 150
19.2.2 ErrorBehavior (from ErrorMOEl)oooiiiiiiiiii e 151
19.2.3 ErrorBehaviorKind (from ErrorModel) «enUMErationcooccueeeiiiiiiiiniiiie e 152
19.2.4 ErrorModelPrototype (from ErrorModel) «atpPrototypemccceeeviiiiieiniiiieeiiiee e 152
19.2.5 ErrorModelType (from ErrorModel) «atPTYPE».....ccovuriiiiiiiiieiiiiiee ettt 153
19.2.6 FailureOutPort (from ErrorMOGEl)cooiiiiiiiiiii e 155
19.2.7 FaultFailurePort (from ErrorModel) {abstract} «atpPrototype»cccccvvvieieiniiiieniniiiee e, 155
19.2.8 FaultFailurePropagationLink (from ErrorModel)coooiiiiiiiiiiiiiiie e 156
19.2.9 FaultinPort (from ErrorMOCE)couuiiiiiiiiiie et 156
19.2.10 InternalFaultPrototype (from ErrorMOdel)ccueeeiiiiiiiiiiiie e 157
19.2.11 ProcessFaultPrototype (from ErrorMOdel)eeeeiiiiiiiiiiiiii e 157

20 o1 (=11 010] 4111 7= 1 oL £ PP 159

20.1 OVEIVIEW ..itiiee ittt ettt ettt ettt e ettt e o1 ettt e o4 e b et e e 4a b e et e e 4a b et e e 4a R e e e e e oa R R e e e e e b Ee e e e e b e e e e nnre e e e anneeeeaan 159

20.2 Element DESCIIPHONSottt ittt ettt e et e e e st et e e e sttt e e e sabb e e e e anbbeeeesbbeeeesbaeeeeanes 159
20.2.1 ASILKind (from SafetyConstraints) «@NUMErationcccoeiuiiiiiiiiiiieaanniiiiiieeee e e e 159
20.2.2 FaultFailure (from SafetyCONSLIAINTS)cooiiuiiiiiiiieei ittt 160
20.2.3 QuantitativeSafetyConstraint (from SafetyCoNnStraints)ccooccviiieeiiiiiiiiiiiiieeee e, 160

©2008-2010 The ATESST2 Consortium 11 (227)

EAST-ADL Domain Model Specification version 2.1

20.2.4 SafetyConstraint (from SafetyCONSIIAINTS)c.ueeeiiiiiieiiiiie e 161

21 SAfEIYREQUINEIMEINT ...ttt e bt e e skt e et e ekt et e e skt et e e s bbe et e e anbb e e e s anbne e e e nnnneee s 162
P O 1Y =T VT PRSP PPP PRSPPI 162
21.2 ElemMent DESCIIPHONSeiiiitiiiee ittt ettt ettt et e e e st et e e s be e e e e st b e e e e aabr e e e e abbeeeesbneeeeane 162
21.2.1 FunctionalSafetyConcept (from SafetyRequirement)cccccceeviiiiiiieiee e 162
21.2.2 SafetyGoal (from SafetyRequUIrE€MENL).........ccuuiiiiiee e st e e e e e s 163
21.2.3 TechnicalSafetyConcept (from SafetyRequirement)ccccceeveiiiiiiieeiee e ccirieee e e e 163

22 SATEIYCASE ..o 165
F R © 1V V1= SRS PRRPT 165
22.2 Element DESCIIPONScciiiriiei ittt et e e st e e s e e e sr e e e e aanr e e e e snr e e e e s nneeeennn 166
2221 Claim (from SAfetyCaSE)ceeiiiiiieiiiiie ettt et enees 166
22.2.2 Ground (from SAFELYCASE).....ccoiuiiieiiiiie ettt st e e b 167
22.2.3 LifecycleStageKind (from SafetyCase) «enuUmerationoccceeeiriureeeiniiieenniiiee e 167
22.2.4 SafetyCase (from SAfEYCASE)ccciiuiiieiiiiiie ittt et sbe e e enees 168
22.2.5 Warrant (from SafetyCase)........cuuiiiiiiiiieiiiiie ettt 169

Part VIII GENETIC CONSIIAINTSceiiiriiiiitiiie ettt et e e st e e s bb et e e s bbbt e e s bbe e e e s asbb e e e e anbbeeesannneeens 170
23 GENETICCONSITAINTSceeee ettt ettt et e st e st e e st e e sk et e s s et e e s s e e e e snn e e e s asnn e e e s nnnne e e s nnnneee s 171
P22 T R © 1V V1= PSSO PRRR 171
23.2 Element DEeSCHPLONS.......ccco i 171
23.2.1 GenericConstraint (from GeneriCCONSIIAINTS)coiiuiiieiiiiieeiriie e 171
23.2.2 GenericConstraintKind (from GenericConstraints) «enumeration»cccceeevvveeeiiiieeennnne. 172
23.2.3 GenericConstraintSet (from GeneriCCONSIIAINTS)uiieiiiiieeiiiiie e 173
23.2.4 TakeRateConstraint (from GeneriCCONSIIAINTS)ccuviieiiiiieeiiiiie e 173

PArt IX INTIASIIUCTUIE ...ttt b et e s bttt e skttt e s e ab ittt e e asbe e e e e enbae e e s annneee s 175
24 [F= 1210/ 011 T OSSP PPR PSPPI 176
2 R © 1V V1= SO 176
24.2 ElEMENt DESCIIPLIONS ... tttitiieeeie ittt et ettt e e e e et b bttt e e e e e s abe bt e et e e e s e aaanbaeeeeeaeesaaannbbseeaeaaesaannes 176
24.2.1 CompositeDatatype (from DatatyPeS)ccueeieiiiiiieiiiiie ettt 176
24.2.2 EABOOIean (from DatatyPES)c.veeieiiiiieeiiiiee ettt ettt et e e st e e et e e e e snbae e e e enneas 177
24.2.3 EADatatype (from Datatypes) {abstract} «atpTYPe»coccieeiiiiiiiiiiiie e 177
24.2.4 EADatatypePrototype (from Datatypes) «atpPrototypesoccocveeiviiieeiniiie e 178
24.2.5 EAFIOaAt (from DAtatyPES)eeeeiiiiieeiiiiiee ittt ettt sttt e e st e e e snbe e e s snbaee e e enneas 178
24.2.6 EAINteger (from DatatyPES)cueiieiiiiieeeiiiie ettt ettt e et e e st e e e sbe e e e s snbeee e e enneas 179
24.2.7 EASHING (from DAtatyPES) ...ceeiiiiiieiiiiee ettt ettt ettt e e st e e et e e s anbae e e e ennes 179
24.2.8 Enumeration (from DatatyPES)......cceiiueiieiiiieieeiiite ettt ettt e st e e et e e s snbee e e e e 180
24.2.9 EnumerationLiteral (from DatatyPeS)coicueeeeiiiiiieiiiiie ettt 180
24.2.10 EnumerationValueType (from DatatyPes)ueeveeeieiccirriiereeeieiiiiiteeeeeessssseeneeeee e s e ssnneneees 180

©2008-2010 The ATESST2 Consortium 12 (227)

EAST-ADL Domain Model Specification version 2.1

24.2.11 RangeableDatatype (from Datatypes) {abStract}...........cocoveiiiiiiiiiiiiiii e 181
24.2.12 RangeableValueType (from DatatyPes)ccceiiureeeiiiiiiieeiiiiee ettt e 181
24.2.13 ValueType (from Datatypes) {ahStract}ccoeoiiiiiiiiiiie e 182

25 =T 01T o ST P PP PO PP POPPPPPPPPPPTN 184
P T R O 1Y =T VT PRSP PPP PRSPPI 184
25.2 ElemMent DESCIIPHONSeiiiiiieiei ittt ettt e et e e e et e e e s be e e e st e e e e e aabe e e e e abbeeeesbreeeeane 185
25.2.1 Comment (from EIEMENTS).....cccoii et e e e e e e e s e rr e e e e e s e e nnnnrenees 185
25.2.2 Context (from Elements) {abStracCt}..........coooiiiiiiiiiie e 186
25.2.3 EAElement (from Elements) {abStract}cccuueeieeeiiiiiiiiiee e 186
25.2.4 EAPackage (from EIements) ... 187
25.2.5 EAPackageableElement (from Elements) {abstract}ccccco 187
25.2.6 EAXML (from EI€MENLS) ..cccocviiiieiicee e 188
25.2.7 FormulaExpression (from Elements) {abstract} «atpMixedString»ccccceeeveinne. 188
25.2.8 MultiLevelReference (from EIemMents) ..o 188
25.2.9 Rationale (from EIEmMEeNtS)cocoiviiiiiii 189
25.2.10 Realization (from EIemMents).........ccooooiiiiii i, 189
25.2.11 Relationship (from Elements) {abstract}ccccoo i, 190
25.2.12 TraceableSpecification (from Elements) {abstract}.........cccoooeiiiiiiiiiiiiiiiiieieccccceececccecceeen 190

26 USEIAIIDULES ...ttt et e e st e e s et e e s r e e e s an et e e s nne e e e snne e e e anrneeennn 192
PG T R © 1Y = = PO PP O PP OUPRPN 192
26.2 Element DEeSCHPLONS.......ccoo i 193
26.2.1 UserAttributeableElement (from UserAttributes) {abstract}cccoooeeiiiiiiiiii e, 193
26.2.2 UserAttributeDefinition (from USErAttribULES)ccoiiuiiiiiiiiieiiie e 194
26.2.3 UserAttributeElementType (from USerAttribUtes)coooiiiiiiiiiiii e 194
26.2.4 UserAttributeValue (from USErAtriDULES)coiuiiiiiiiiiie e 195

PArT X ANNEXES ... s 197
27 ANNEX AI NOTALION ...ttt e e e e e e e e et e e e e r et e e e aar e e e e arr e e e e nnns 198
28 ANNEX B NBEUS ...ttt e et e e e ettt e e e s e b et e e e e nbe e e e e anb et e e e anbb e e e e anbeeeeeanres 202
28.1 OVEIVIEW ..ttt ettt ettt ettt e ettt e et ettt e o1 a b et e e 4a b et e e o4 e b e e e e e oa R e et e e e R R e e e e e R e e e e e b e e e e n b et e e nnne e e e e 202
28.2 ElemMent DESCIIPHONS......eiiiiiiiee ittt e ettt e et e e e sttt e e e s be e e e e sabb e e e e anbeeeeesbbeeeesbaeeeeanes 202
28.2.1 ArchitecturalDescription (from Needs) {abstract}c.ueeiiiiiiiii e, 202
28.2.2 ArchitecturalModel (from Needs) {abStract} ... 203
28.2.3 Architecture (from Needs) {abSIract}oooiieiiiiiiii e 203
28.2.4 BusinessOpportunity (from NEEAS)......c.ouiii ittt 203
28.2.5 Concept (from Needs) {abSIract}coui e 204
28.2.6 Mission (from Needs) {aDSLracCt}cooiiiiiiii e 204
28.2.7 ProblemStatement (from NEEUS)eeiiiiiiiiiiiiiiii e 205
28.2.8 ProductPositioning (from NEEAS)cuiiiiiiiiiiiiiiie e 205

©2008-2010 The ATESST2 Consortium 13 (227)

EAST-ADL Domain Model Specification version 2.1

28.2.9 Stakeholder (from NEEAS)......ccoiuiiiiiiiiie et 206
28.2.10 StakeholderNeed (from NEEAS)cciiuiiiiiiiiiii e 207
28.2.11 VehicleSystem (from Needs) {abStract}.........cc.vvoiiiiiiiiiiiii e 207

29 ANNEX C: BENAVIOTCONSIIAINTS.viiieiiiiiiee ettt ettt e e e st e e st e e e e anbr e e e e nnnes 209
P T R O 1Y =T VT P PR PPP PRSP 209
29.2 ElemMent DESCIIPIONSeiiiiiiiee ittt ettt ettt ettt e e st e e e e s be e e e st e e e e e aabb e e e e abbeeeesbneeeeane 211
29.2.1 BehaviorAnnex (from BehaviorCONSIIAINtS)ccceuiiiiiiiiiiiieeeiiiiiiiieeee e e s s seirrne e e e e e s e nnenenees 211
29.2.2 BehaviorConstraint (from BehaviorConstraints) {abstract}...........cccccceeeeeiiiiiiiiiiee e, 212
29.2.3 ComputationConstraint (from BehaviorConstraints)ccccceeeviiiciiiieieee e csiireeeee e e s e 213
29.2.4 Flow (from BehaviorCONSIainNtS)cccoviiiiiiiiii e 213
29.2.5 Parameter (from BehaviorConstraintS)cccovviviiiiiiiii 214
29.2.6 ParameterCondition (from BehaviorConstraints)..........cccccceeeeeeeiiiiei e, 214
29.2.7 ParameterConstraint (from BehaviorConstraints)...........cccccceeveviiieiii e, 215
29.2.8 State (from BehaviorConstraintS)ccoovvviiiiiiiii e 215
29.2.9 StateMachineConstraint (from BehaviorConstraints)cccccceeeveeiiiieeeeee, 216
29.2.10 Transformation (from BehaviorConstraints)........cccoooooeieiiiiiiiiiiiicccse s 217
29.2.11 Transition (from BehaviorCONSLIAINTS)uieieiiiiieeceee s 218

30 106 [TP PP TP TP PPPPPPPPTN 219

©2008-2010 The ATESST2 Consortium 14 (227)

EAST-ADL Domain Model Specification version 2.1

Part | Introduction

The purpose of the EAST-ADL language is to capture automotive electrical and electronic systems
with sufficient detail to allow modeling for documentation, design, analysis, and synthesis. These
activities require system descriptions on several abstraction levels, from top level features down to
tasks and communication frames. Moreover, the activities also involve the expression of non-
structural aspects of the electrical/electronic system under development, e.g., requirements,
behavior, and verification and validation.

By hosting all aspects of the automotive electrical/electronic system with this domain model, the
relations between them can be managed more efficiently. The different abstraction levels give a
modeling context and a view of systems, functions, and features on different levels of detail, and
with a clear separation of concerns.

This language specification describes how information needed for relevant analysis and synthesis
can be captured but does not define how the analysis or synthesis should be done. This approach
was chosen in order to allow company-specific processes while harmonizing the design artifacts to
allow information exchange between tools and organizations. In supplementary material we
provide a methodology description, where the language concepts are used in the context of a
generic process.

The purpose of the domain model is to specify the concepts of the domain. The domain model of
EAST-ADL also acts as a metamodel, which uses concepts from the AUTOSAR metamodel. This
means that the EAST-ADL metamodel (i.e., the EAST-ADL domain model) can be imported into
the AUTOSAR metamodel, where the references from EAST-ADL to AUTOSAR are restored. The
current version of the corresponding AUTOSAR metamodel is 3.1.

To import EAST-ADL into an AUTOSAR metamodel:
1) Open the AUTOSAR metamodel in Enterprise Architect.
2) Import the EAST-ADL metamodel as an XMl-file.

©2008-2010 The ATESST2 Consortium 15 (227)

EAST-ADL Domain Model Specification version 2.1

“ariability |

AU | Structure et
;I + GenearicStucture _| + SystemModeling e -
;l + SystemTemplate P OEEEEEEE _| + FeatureModeling Ervvironment
[+ MSR] * VehicleFeatureModeling S
hd’mm Damaimidadel) _| *+ Functionbdodeling IR I
:\] + Hardwaretadeling Trmmeeeo] Timing |
Infrastructure | i ’{:'ﬁ'- e a
;l + Elemeants H Eeharvior |
;l + Datatypes H
] + UserAttibutes .'I e T
/ - “‘-L GenericCaonstraints |

- Interchange |

Requirements |

Depandability

*{ werificationvalidation |

s Reguieaerts)

Figure 1. This diagram shows dependencies between packages in the domain model. All packages
except the AUTOSAR package depend on the EAST-ADL Infrastructure package. The AUTOSAR
package contains some concepts that EAST-ADL elements in the Infrastructure and Structure

packages depend on.

EAST-ADL

_‘| + Requirements

_‘I + Environment

_‘I + Interchange

_\l + Timing

_‘| + Dependability

_‘| + GenericConstraints

@\ Dependability

_‘I + Infrastructure

o D ia o))

Timing

Structure

_‘| + Systembdodeling
_‘| + Featurebadeling
_‘I + WehicleFeaturabdodeling

_\l + Functionhodeling
_‘l + Hardwaramiodeling

_‘l + Structure Requirements @/
;l + Behauiar
\l + Wariability @‘h‘_

%\\ SafetyConstraints
SafetyCase

UseCases
|

from Reguiements)

werificationvalidstion |

| SafetyRequire rent
|

froa Dependahility)

o Reguimaents)

froae Degemdaiility)

froa Dependahility)

Errorbodel

froa Dependzhility)

Elerments::EAXML

TimingConstraints

| tags
admin.documentVersion = 2010-05-30
autesar.documentVfersion = 2.1
=ml.globalElement = true

from Fiaring)

from Fiaring)

Figure 2. Packages in the EAST-ADL domain model.

©2008-2010 The ATESST2 Consortium 16 (2

27)

EAST-ADL Domain Model Specification version 2.1

1 Language Formalism

1.1 Levels of Formalism

The EAST-ADL domain model is specified using a combination of UML modeling techniques and
precise natural language to balance rigor and understandability.

1.2 Specification Structure

The EAST-ADL domain model specification is organized into different parts:
Part | includes a general introduction to the specification.

Parts 1I-1X include chapters that are organized according to the EAST-ADL domain model
subpackages.

Part X consists of annexes. This is where the notation for each element of the language is found.

Each part of the specification contains one or more chapters. Each chapter has the same
structure: first an Overview section and then am Element Descriptions section.

The EAST-ADL specification has an Annex A proposing a possible notation for some of the
metaclasses. Subsequent annexes contain preliminary extensions to the language that add
modelling concepts that are not part of the basic content. It is likely that these extensions will be
refined and subsequently integrated into the regular extensions in future releases of EAST-ADL.

1.2.1 Overview

This section of a chapter provides an overview of the EAST-ADL domain model constructs defined
in each subpackage, which are usually described by one or more class diagrams that show the
relationships between the elements of the package and, where applicable, relationships to other
packages.

Elements from AUTOSAR are shown in the diagrams as classes with a pink background.

1.2.2 Element Descriptions

The Element Description specifies the individual elements within each EAST-ADL subpackage. All
elements in the subpackage are ordered alphabetically and each element has the following
specification information:

<Element (from subpackage)>

The element description starts with a header with the name of the element and the subpackage
that it belongs to. If the element is abstract, “{abstract}” is shown in the header. If the element has
a stereotype attached, this is shown within guillemets («...»).

Generalizations

This paragraph lists those domain model constructs that the current element specializes (inherits
from).

Description

©2008-2010 The ATESST2 Consortium 17 (227)

EAST-ADL Domain Model Specification version 2.1

This paragraph provides a description of the current element and the direct context of this element
(related domain model constructs).

Attributes

This paragraph specifies the element’'s attributes with names and types. The attribute has a
unigue name within the element. Each attribute has a type which is either a primitive or refers to
an enumeration.

In addition, each attribute is supplied with a cardinality; EAST-ADL uses only cardinalities [0..1] for
optional attributes and [1] for mandatory attributes.

Associations

This paragraph specifies the element’s rolenames for related concepts, as referred to by this
element by an association. The documentation of the rolename may include the stereotype
«isOfType», which is used to specify that the related element types this element.

Dependencies

This paragraph specifies the element’s rolenames for related concepts, as referred to by this
element by a dependency. The dependencies are always stereotyped «instanceRef» which is the
pattern used by AUTOSAR to identify that a more detailed model of associations rather than this
dependency is necessary to identify the precise context of the target element.

Constraints

This paragraph specifies the element’s constraints for verification of the correct use of the
element. The constraints are given in natural language.

Semantics

This paragraph specifies the element's meaning in a concise form and defines how it may be used
and specialized by other elements within the language. Definitions in this paragraph are not
tailored to understandability (as in the "Description" paragraph) but precision and succinctness.

©2008-2010 The ATESST2 Consortium 18 (227)

EAST-ADL Domain Model Specification version 2.1

2 Abbreviations

AADL
ADL
ATESST

AUTOSAR
EAST-EEA

ECU
FAA
FDA
HDA
RIF
SysML
TADL
TIMMO
UML
V&V
XM
XML

©2008-2010 The ATESST2 Consortium

Architecture Analysis and Design Language
Architecture Description Language

Advancing Traffic Efficiency and Safety through
Software Technology

AUTomotive Open System ARchitecture

Electronics Architecture and Software Technology -
Embedded Electronic Architecture

Electronic Control Unit
Functional Analysis Architecture
Functional Design Architecture
Hardware Design Architecture
Requirement Interchange Format
System Modeling Language
Timing Augmented Description Language
Timing Model

Unified Modeling Language
Verification & Validation

XML Metadata Interchange

eXtensible Mark-up Language

19 (227)

EAST-ADL Domain Model Specification version 2.1

Part Il Structural Constructs

This part of the specification defines the structural constructs used in EAST-ADL. The structural
view of a model focuses on the static structure of the instances of the system being modeled and
their static relationships. This includes the internal structure of such instances and their external
interfaces through which they can be connected to communicate with one another, by exchanging
data or sending messages.

EAST-ADL abstraction layers are introduced to allow reasoning about the features on several
levels of abstraction. Note, however, that the abstraction levels are only conceptual; the modeling
elements are organized according to the artifacts, which may span more than one of these layers.
Where applicable, entities on different abstraction levels are related with a realization association
to allow traceability analysis. Traceability can also be deduced from the requirements structure.

The EAST-ADL abstraction layers with their corresponding artifacts are:

- Vehicle Level, with feature models describing decompositions of system characteristics
organized as a software product line.

- Analysis Level, including the Functional Analysis Architecture (FAA). The FAA is built from
an abstract functional definition of the system to capture analysis support of what the system shall
do, ensuring relation with features from the Vehicle layer view. There is an n-to-m mapping
between VehicleFeature and Feature entities and FAA entities (i.e., one or several functions may
realize one or several features).

- Design Level, including the Functional Design Architecture (FDA). The FDA represents a
decomposition of functionalities denoted in the FAA, including behavioral description but excluding
software implementation constraints. The decomposition has the purpose of making it possible to
meet constraints regarding non-functional properties such as allocation, efficiency, reuse, or
supplier concerns. Again, there is an n-to-m mapping between entities in the FDA and entities in
the FAA. Non-transparent infrastructure functionality of the AUTOSAR Basic SW Architecture,
such as mode changes and error handling, are also represented at the Design Level.

- Implementation Level refers to the System element in an AUTOSAR model.

- The Hardware Architecture models Electronic Control Units (ECUs), communication links,
sensors and actuators and their connections. The Hardware Architecture is also considered at the
analysis level as FunctionalDevices because models of sensors, actuators, and early assumptions
of hardware may be needed for the Functional Analysis Architecture.

- The Environment contains Environment functions, which are encapsulations of plant
models, i.e., models of the behavior of the vehicle and its non-electronic systems. Environment
models are needed for validation and verification, from early analysis models to the implemented
embedded system.

©2008-2010 The ATESST2 Consortium 20 (227)

EAST-ADL Domain Model Specification version 2.1

3

SystemModeling

3.1

Overview

The SystemModel is the top-level container of an EAST-ADL model.

It represents the

electrical/electronic system in a vehicle and concepts related to the various abstraction levels.

For the design of electrical/electronic systems of arbitrary size and complexity, the possibility of
hierarchical structuring of the instances is provided, so these models contain further elements in a
hierarchy. Relations between these elements across the boundaries of the abstraction levels are
contained in a SystemModel. This is possible because the SystemModel is a Context, and is thus
able to contain relations.

watpStructureElements
SystamModel 1 a1

Ciowrhext
+uehicleLewel

+analysisLewel

1 0.1

Caotext
watpStructureEle ments +technicalFeaturabiodel
Wehiclelewel ’ -
0.1 0.
Caotext

watpStructureElements
Analysisleweal

+functionalAnalysisArchitecture

Ciorest

watpStructureElements
FeatureMaodeling::Festurebodel

+ compliancelevel: String

Comhext

aatpStructureElements
Designlewel

0.

1 0.1

+functionallesignArchitecture

FurctionPmtotyne

Functionhodeling::
AnalysisFunction Prototype

+designlLewel

1 0.1

AllocatezbleElement
FuwetiorPototyoe

Functiontodeling::
DesignFunction Prototype

0.1 0.1
+hardware lesignAnchitecture
(-
0.1 0.1
+allocation
el

ANccation Tamet
EAElement

watpPrototypes
Hardwarebtodeling::
HardwareComponent Prototype

+implementationLewel

1 0.1

Comhext

watpStructureElements
ImplementationLewvel

+autosarSystem

EAElesent

Functionhodeling::
Allocation

Figure 3. Diagram for SystemModel.

AUTOSAR SystemTemplate.

0.1

«atpStructureElements
SystemTemplate: System

Note how the ImplementationLevel refers to the System from the

3.2

Element Descriptions

3.2.1

AnalysisLevel (from SystemModeling) «atpStructureElement»

Generalizations

Context (from Elements)

©2008-2010 The ATESST2 Consortium

21 (227)

EAST-ADL Domain Model Specification version 2.1

Description

AnalysisLevel represents the vehicle electrical/electronic system in terms of its abstract functional
definition. It includes the functional analysis architecture (FAA), which represents the functional
structure.

Attributes
No additional attributes
Associations

¢ functionalAnalysisArchitecture : AnalysisFunctionPrototype [0..1]
The included functionalAnalysisArchitecture, this prototype shall be typed by an
AnalysisFunctionType modeling the FunctionalAnalysisArchitecture. It is an abstract
functional representation of the electrical/electronic system and realizes the
VehicleFeatures.

Constraints
No additional constraints
Semantics

AnalysisLevel represents the vehicle electrical/electronic system in terms of its abstract functional
definition. It defines the logical functionality and a logical decomposition of functionality down to
the appropriate granularity.

3.2.2 DesignLevel (from SystemModeling) «atpStructureElement»

Generalizations

e Context (from Elements)
Description

DesignLevel represents the vehicle electrical/electronic system on the design abstraction level. It
includes primarily the Functional Design Architecture (FDA), and the HardwareDesignArchitecture
(HDA).

FDA represents a top level Function. It is supposed to implement all the functionalities of a vehicle,
as specified by a Functional Analysis Architecture or a Vehicle level (if no Functional Analysis
Architecture has been defined during the process).

The design level in EAST-ADL includes the design architecture containing the functional
specification and hardware architecture of the vehicle electrical/electronic system. The design
architecture includes the Functional Design Architecture representing a decomposition of
functionalities analyzed on the analysis level. The decomposition has the purpose of making it
possible to meet constraints regarding non-functional properties such as allocation, efficiency,
reuse, or supplier concerns. There is an n-to-m mapping between entities of the design level and
the ones on the analysis level.

Non-transparent infrastructure functionality such as mode changes and error handling are also
represented at the design level, such that their impact on applications' behaviors can be
estimated.

The Functional Design Architecture parts are typed by FunctionTypes and LocalDeviceManagers.
The view of the HardwareArchitecture facilitates the realization of LocalDeviceManager as
sensor/actuator HW elements.

The HDA is the hardware design from a system perspective. The HDA has two purposes:

1) It shows the physical entities and how they are connected.

©2008-2010 The ATESST2 Consortium 22 (227)

EAST-ADL Domain Model Specification version 2.1

2) It is an allocation target for the Functions of the Functional Design Architecture.

The HDA represents the hardware architecture of the embedded system. Its contained HW
elements represent the physical aspects of the hardware entities and how they are connected.
HardwareFunctionTypes associated to HW components represent the logical behavior of the
contained HW elements.

Attributes
No additional attributes
Associations

¢ allocation : Allocation [*]

¢ functionalDesignArchitecture : DesignFunctionPrototype [0..1]
The included FunctionalDesignArchitecture (FDA). This includes functional design,
modeled by DesignFunctions; middleware functionality abstraction, to be modeled by
BasicSoftwareFunctionTypes in the implementation level; and logical hardware, modeled
by HardwareFunctionTypes.

The FunctionalDesignArchitecture represents the elementary design function that is used
to describe the leaves of the functional hierarchy. The composition of these leaves makes
up the implementation behavior of the entire functional hierarchy.

e hardwareDesignArchitecture : HardwareComponentPrototype [0..1]
The included Hardware Design Architecture models the resources to which the functional
design architecture parts may be allocated.

Constraints
No additional constraints
Semantics

The DesignLevel is the representation of the vehicle electrical/electronic system on the design
abstraction level. It corresponds to the design of logical functions and boundaries extended in
regards to resource commitment.

3.2.3 ImplementationLevel (from SystemModeling) «atpStructureElement»

Generalizations

e Context (from Elements)
Description

ImplementationLevel represents the software architecture and the hardware architecture of the
electrical/electronic system in the vehicle. The ImplementationLevel is defined by the AUTOSAR
SystemArchitecture and SoftwareArchitecture. For example, functions of the Functional Design
Architecture will be realized by AUTOSAR SW-Components in the ImplementationLevel.
Traceability is supported from implementation level elements (AUTOSAR) to upper level elements
by Realization relationships.

Attributes
No additional attributes
Associations

e autosarSystem : System [0..1]
The AUTOSAR System from the SystemTemplate represents the AUTOSAR
implementation of the SystemModel.

©2008-2010 The ATESST2 Consortium 23 (227)

EAST-ADL Domain Model Specification version 2.1

Constraints
No additional constraints

Semantics

3.24 SystemModel (from SystemModeling) «atpStructureElement»

Generalizations

e Context (from Elements)
Description

SystemModel is used to organize models/architectures according to their abstraction level; it can
also hold with relationships between the different levels.

Attributes
No additional attributes
Associations

¢ vehicleLevel : VehicleLevel [0..1]
The included vehicle abstraction level.

e designLevel : DesignLevel [0..1]
The included analysis abstraction level.

¢ analysisLevel : AnalysisLevel [0..1]
The included design abstraction level.

¢ implementationLevel : ImplementationLevel [0..1]
The included implementation abstraction level.

Constraints
No additional constraints
Semantics

The SystemModel represents the electrical/electronic system of the vehicle, and concepts related
to the various abstraction levels.

3.25 VehicleLevel (from SystemModeling) «atpStructureElement»

Generalizations

e Context (from Elements)
Description

VehicleLevel represents an arbitrary set of feature models containing only VehicleFeatures.
Attributes

No additional attributes

Associations

e technicalFeatureModel : FeatureModel [0..*]
This association identifies the core technical feature model of the complete system. This
has a special role as it defines all the features of the complete system on vehicle level. In

©2008-2010 The ATESST2 Consortium 24 (227)

EAST-ADL Domain Model Specification version 2.1

addition to this feature model, there may be one or more so-called product feature models
(cf. association productFeatureModel in meta-class Variability in the variability extension).

Usually there will be the core technical feature model and one or more so-called "product
feature models" on vehicle level, which provide an orthogonal view on the core technical
feature model tailored to a particular purpose, for example an end-customer feature model.
However, there may be other use cases for feature models on vehicle level. More detailed
treatment of this is beyond the scope of the language specification and can be found in the
accompanying usage and methodology documentations.

Constraints
[1] All contained feature models are FeatureModels that only contain VehicleFeatures.

Semantics
The VehicleLevel contains the technical feature models.

©2008-2010 The ATESST2 Consortium 25 (227)

EAST-ADL Domain Model Specification version 2.1

4 FeatureModeling

4.1 Overview

This package describes the basic feature modeling that is employed on the vehicle level as well as
on the artifact levels, i.e., on AnalysisLevel and below. Details of feature modeling that are specific
to the vehicle level are factored out and documented separately in the package
VehicleFeatureModeling.

Cowrbext

1 o.r

EAElemert
-

Fezture Constraint

watpStructureElements
Featurebodel

+featureConstraint

+ complianeelevel: String + criterion: String

’ 0.1 1 0.7
+featurelink
Felationshio

Featurelink

senumerations
“ariabilityDependencykind

Cowrdext

FeafureTreeiade

+ehildMode

+ customType: String
+ izBidirectional: Boolean [0..1]

+ kind: WariabilityDependenoykind

needs:
optionalAlternative:

suggests:

2
+
+
+ mandatongAlternative:
+
+
+

impedas:
custom:
+rootFeature +start +end
o= 1 1
EAElement o +requiredBinding Time EAElemant
FeztureGrou i ndi
2 tohildFeature watpStructureElements oA BindingTime
+ cardinality: String 2= Feature + kind: BindingTimeKind = systemDesignTime
0.1 ; PR . 0.1 +actualBinding Time
+ cardinality: String
[
1
0.1

«enumerations
BindingTi meKind

+featureParameter| 0.1 &num

+ systemDesignTime:
IR + codeGenerationTime:
zatpPrototvpes + preCompileTime:
Datatypes:: + linkTime:
EADztatypePrototype + postBuild:
+ runtime:

Figure 4. Diagram for FeatureModeling.

4.2 Element Descriptions

421 BindingTime (from FeatureModeling)

Generalizations

e EAElement (from Elements)
Description

The motivation for attributing features and variable elements with binding times is that binding
times encapsulate important information about the variability under view.

Variability that must be bound (determined, decided) very early in the system development may
not be visible in one single feature model but only in comparison with different feature models in
the context of multi-level feature trees; late bound variability is variability providing the driver with
choices for current equipment configuration.

©2008-2010 The ATESST2 Consortium 26 (227)

EAST-ADL Domain Model Specification version 2.1

Binding times are important because they describe if the variability must be decided during system
development or if the variability is determined by a customer or if the variability itself is part of the
product features that are sold to the customer. Possible binding times are:

- SystemDesignTime

- CodeGenerationTime
- PreCompileTime

- LinkTime

- PostBuild

- Runtime

Note that a binding time is never a particular point in time such as April 2nd, 2011, but always a
certain stage in the overall development, production and shipment process as represented by the
above values.

Each feature must have a binding time (association requiredBindingTime) and may have one
further binding time (association actualBindingTime).

The required binding time describes the binding time that the feature is intended to have. But due
to technical conditions it may occur that the actually realized binding time of the feature differs
from the originally intended binding time. In this case one has to provide information about the
actual binding time. In the rationale it must be described by what the required binding time is
motivated by and what the reasons are for a (different) actual binding time.

Attributes

e kind : BindingTimeKind = systemDesignTime [1]
The kind of the binding time, see enumeration BindingTimeKind for specification of binding
times.

Associations

No additional associations
Constraints

No additional constraints

Semantics

4.2.2 BindingTimeKind (from FeatureModeling) «enumeration»

Generalizations

None

Description

BindingTimeKind represents the set of possible binding times.
Enumeration Literals

e codeGenerationTime
Variability will be bound during code generation.

From AUTOSAR:

* Coding by hand, based on requirements document.

©2008-2010 The ATESST2 Consortium 27 (227)

EAST-ADL Domain Model Specification version 2.1

* Tool based code generation, e.g. from a model.
* The model may contain variants.
* Only code for the selected variant(s) is actually generated.

e linkTime
Variability will be bound during linking.

From AUTOSAR:
Configure what is included in object code, and what is omitted
Based on which variant(s) are selected

E.g. for modules that are delivered as object code (as opposed to those that are delivered
as source code)

e postBuild
Variability will be bound at certain occasions after shipment, for example when the vehicle
is in a workshop.

o preCompileTime
Variability will be bound during or immediately prior to code compilation.

From AUTOSAR:

This is typically the C-Preprocessor. Exclude parts of the code from the compilation
process, e.g., because they are not required for the selected variant, because they are
incompatible with the selected variant, because they require resources that are not present
in the selected variant. Object code is only generated for the selected variant(s). The code
that is excluded at this stage will not be available at later stages.

e runtime
Variability will be bound by the customer after shipment by way of vehicle configuration.

Variability with such a late binding time can also be seen as a special functionality of the
system which is not documented as variability at all. However, it is sometimes
advantageous to represent such cases as variability in order to be able to seamlessly
include them in the overall variability management activities.

e systemDesignTime
Variability will be bound during development of the electrical/electronic system.

From AUTOSAR:
* Designing the VFB.
* Software Component types (portinterfaces).
* SWC Prototypes and the Connections between SWCprototypes.
* Designing the Topology
* ECUs and interconnecting Networks
* Designing the Communication Matrix and Data Mapping
Associations
No additional associations
Constraints
No additional constraints

Semantics

©2008-2010 The ATESST2 Consortium 28 (227)

EAST-ADL Domain Model Specification version 2.1

4.2.3

Feature (from FeatureModeling) «atpStructureElement»

Generalizations

FeatureTreeNode (from FeatureModeling)
EAElement (from Elements)

Description

A Feature represents a characteristic or trait of some object of consideration. The actual object of
consideration depends on the particular purpose of the feature's containing feature model.

Example 1. The core technical feature model on vehicle level defines the technical properties of
the complete system, i.e., vehicle. So its object of consideration is the vehicle as a whole and
therefore its features represent characteristics or traits of the vehicle as a whole.

Example 2: The public feature model of some function F in the FDA defines the features of this
particular software function. So its object of consideration is function F and therefore its features
represent characteristics or traits of this function F.

Attributes

cardinality : String [1]
Specifies the Feature's cardinality stating how often this feature may be selected during
configuration.

Typical cardinalities include:

- A cardinality of 0..1 means that this Feature is optional, i.e. it can be selected or
deselected during configuration.

- A cardinality of 1 means that this Feature is mandatory, i.e. it cannot be deselected but is
always present in a configuration if its parent feature is present; mandatory root features
are present in all configurations.

- A cardinality of 0 means that this Feature is abstract, i.e. it cannot be selected and is
never present in any configuration. This can be used to completely disable a feature and, in
the case of non-leaf features, the whole subtree below it, for example to tentatively remove
a subtree without (yet) deleting it completely from the model.

- A cardinality with an upper bound greater than 1 or * (infinite), such as [0..2], [1..*], or
[2..8], means that this Feature is cloned, i.e. it may be selected more than once during
configuration. If such a feature is actually selected more than once in a particular
configuration, then its entire subtree may be configured differently for each selection.
Cloned features are in fact instantiated during configuration and each instance is provided
with a name.

Note that using cloned features, i.e. features with cardinality having an upper bound
greater than 1, has far-reaching consequences for how Features are applied. If this is not
desired/needed in a certain project, cardinalities >1 can be prohibited by specifying an
appropriate complianceLevel in the FeatureModel. As a general guideline, cloned features
should be avoided as far as possible. In some situations, however, they can prove
extremely useful and elegant. For example, consider the feature model of a wiper system;
in order to allow for an extremely flexible configuration of the interval modes, a single
parameterized cloned feature can be used: "IntervalMode[2..*] : Float". With this single
cloned feature, any number of intervals can be created (but at least 2) and for each interval
a precise duration in sec can be configured; without cloned features, this degree of
flexibility could not easily be achieved.

©2008-2010 The ATESST2 Consortium 29 (227)

EAST-ADL Domain Model Specification version 2.1

Associations

e actualBindingTime : BindingTime [1]
The actual binding time, independent of the required binding time.

Due to technical conditions it may occur that the actually realized binding time of the
feature/variation point differs from the originally intended binding time. In this case one has
to provide information about the actual binding time.

In the rationales it must be described what the reasons are for a (different) actual binding
time.

e requiredBindingTime : BindingTime [0..1]
The required binding time could possibly deviate from the actual binding time.

The attribute reflects the intended binding time, and actual binding time can be later
adapted to this required binding time, if surrounding constraints allow a change.

Each feature/variation point must have a required binding time attribute.

e childNode : FeatureTreeNode [0..*]
Features may have any number of Features or FeatureGroups as their children or none at
all.

o featureParameter : EADatatypePrototype [0..1]
For parameterized features, this specifies the type of the feature's parameter.

Parameterized features are special features that can not only be selected or deselected
during configuration but, if selected, they can also be supplied with a value of a particular
type (e.g. an integer). Note that only the type but not the actual value of a feature
parameter is defined within the feature model; the actual value is defined as part of the
configuration of this feature model.

Constraints
No additional constraints
Semantics

Feature is a (non)functional characteristic, constraint or property that can be present or not in a
(vehicle) product line.

42.4 FeatureConstraint (from FeatureModeling)

Generalizations

e EAElement (from Elements)
Description

Captures a constraint on the containing feature model's configuration which is too complex to be
expressed by way of a FeatureLink. In general, all constraints that can be expressed by a
FeatureLink can also be expressed by a FeatureConstraint, but not vice versa.

Attributes

e criterion : String [1]
The actual constraint. This is a logic expression in VSL like the criterion of a
ConfigurationDecision. For the constraint to be met this expression always has to evaluate
to true.

©2008-2010 The ATESST2 Consortium 30 (227)

EAST-ADL Domain Model Specification version 2.1

For example, to express a mutual exclusion of two features, use the expression "! (Radar &
RainSensor)". However, note that this particular constraint could also be formulated as a
FeatureLink with type "excludes".

Associations

No additional associations
Constraints

No additional constraints

Semantics

425 FeatureGroup (from FeatureModeling)

Generalizations

o FeatureTreeNode (from FeatureModeling)
Description

FeatureGroup is a specialization of the FeatureTreeNode, enabling grouping of several Features.
It specifies with its cardinality how these grouped features can be combined. For example, a
FeatureGroup owning the two Features A and B, and with a cardinality of [1], means that A and B
are alternatives.

Attributes

e cardinality : String [1]
The cardinality of the FeatureGroup. It states how many of its child features can be
selected in a valid configuration. Mandatory features among the child features count as 1
and for cloned features all instances created in the configuration count.

Associations

o childFeature : Feature [2..*]
FeatureGroups may only have Features as their children and must always have at least
two children.

It is perfectly legal to have child features in a feature group that are mandatory or cloned.
However, except for special use cases, this is discouraged and therefore all child features
of a FeatureGroup should usually be optional, i.e. have cardinality [0..1].

Constraints

No additional constraints

Semantics

FeatureGroup is a grouping entity for sibling Features to reflect variability for a set of Features.

4.2.6 FeatureLink (from FeatureModeling)

Generalizations

¢ Relationship (from Elements)
Description

A FeatureLink resembles a Relationship between two Features referred to as 'start’' and 'end'
feature (such as "feature S requires feature E" or 'S excludes E").

©2008-2010 The ATESST2 Consortium 31 (227)

EAST-ADL Domain Model Specification version 2.1

The type of the FeatureLink specifies the precise semantics of the relationship. There are several
predefined types, for example "needs" states that S requires E. In addition, user-defined types are
allowed as well. For user-defined types, attribute ‘customType' provides a unique identifier of the
custom link type and attribute 'isBidirectional' states whether the link is uni- or bidirectional.

FeatureLinks are similar to FeatureConstraints but much more restricted. The rationale for having
FeatureLinks in addition to FeatureConstraints is that in many cases FeatureLinks are sufficient
and tools can deal with them more easily and appropriately (e.g. they can easily be presented
visually as arrows in a diagram).

Attributes

customType : String [1]
The custom type of this FeatureLink identified by a String value. This attribute's value is
ignored if attribute 'kind' is set to some other value than 'custom'.

Each company or project can decide to use additional link types by defining unique key-
words for them. In cases where FeatureModels are shared with third parties (other
departments, companies, etc.) a globally unique type string must be used. Follow the
instructions for finding globally unique keys for user attributes (cf. documentation of
metaclass UserAttributeValue).

isBidirectional : Boolean [0..1]

Tells whether the FeatureLink is bidirectional or unidirectional. For predefined kinds, such
as "needs", "mandatoryAlternative", etc., this attribute will be ignored and the kind
determines whether the link is bidirectional or not (as defined in the documentation of
attribute 'type', below). For custom kinds, this attribute may be provided to explicitly state
the link's direction. If this attribute is not provided in case of a custom link type, then the
link is assumed to be unidirectional.

kind : VariabilityDependencyKind [1]

The kind determines the precise semantics of the relation between the FeaturelLink's start
and end feature. There are 5 predefined kinds as defined by enumeration
VariabilityDependencyKind and in the case of kind 'custom’ the attribute customType can
be used to define a custom feature link type.

Associations

start : Feature [1]
The source [supplier] Feature of the relationship.

end : Feature [1]
The target [client] Feature of the dependency.

Constraints

[1] The start and end Features of a FeatureLink must be contained in the FeatureModel that
contains the FeatureLink.

Semantics

The FeatureLink is a relationship between Features that may constrain the selection of Features
involved in the relationship.

4.2.7

FeatureModel (from FeatureModeling) «atpStructureElement»

Generalizations

Context (from Elements)

Description

©2008-2010 The ATESST2 Consortium 32 (227)

EAST-ADL Domain Model Specification version 2.1

FeatureModel denotes a model owning Features. The FeatureModel can be used to describe
variability and commonality of a specified electrical/electronic system at any abstraction level in the
SystemModel.

The FeatureModel can be used either to describe the variability within a particular Function or to
describe the overall variability of a vehicle (cf. VehicleLevel). The FeatureModel describing internal
variability of a FunctionType refers to the VehicleLevel by a «realizes» link (informative).

Note, however, that a FeatureModel per definition does not always have to define variability. If a
feature model contains only mandatory features, then its purpose is completely unrelated to
variability. The features in such a FeatureModel could serve, for example, as invariant "coarse-
grained requirements". The most important example is the core technical feature model on vehicle
level which is also used for SystemModels that do not contain any variability at all. However, most
uses of feature models in EAST-ADL are primarily motivated by variability definition and
management.

A public, local FeatureModel of an artifact element realizes a VehicleFeature of the VehicleLevel.
Attributes

e compliancelLevel : String [1]
This attribute specifies that the FeatureModel should comply with a certain, established
feature modeling and diagramming technique (such as FODA, pure::variants).

Associations

e rootFeature : Feature [0..*]
The root Features owned by the FeatureModel. Note that only root Features are directly
contained in the model; non-root Features are contained in their parent Feature or parent
FeatureGroup.

o featureLink : FeatureLink [0..*]
The FeatureLinks owned by the FeatureModel.

o featureConstraint : FeatureConstraint [0..*]
FeatureConstraints owned by the FeatureModel.

Constraints
No additional constraints
Semantics

The FeatureModel has no specific semantics. Further subclasses of FeatureModel will add
semantics appropriate to the concept they represent.

4.2.8 FeatureTreeNode (from FeatureModeling) {abstract}

Generalizations

e Context (from Elements)
Description

The abstract base class for all nodes in a feature tree.
Attributes

No additional attributes

Associations

No additional associations

©2008-2010 The ATESST2 Consortium 33 (227)

EAST-ADL Domain Model Specification version 2.1

Constraints

No additional constraints

Semantics

FeatureTreeNode has no specific semantics. Further subclasses of FeatureTreeNode will add
semantics appropriate to the concept they represent.

4.2.9

VariabilityDependencyKind (from FeatureModeling) «enumeration»

Generalizations

None

Description

This enumeration encapsulates the available types of constraints that can be applied to a
FeatureLink or VariationGroup (the latter is applicable only if the variability extension is used).

Enumeration Literals

custom
When used in a FeatureLink: the attribute customType in the FeatureLink defines the
custom feature link type as explained there.

When used in a VariationGroup: this kind states that the dependency between the
elements denoted by association variableElement of the VariationGroup will be defined by
a logical expression in attribute 'constraint' of the VariationGroup.

impedes
Weak from of "excludes".

When used in a FeatureLink: the FeatureLink's start feature S and its end feature E must
usually(!) not be selected in a single configuration. You can select S together with E but
you should have a good reason to do so. Always bidirectional.

When used in a VariationGroup: accordingly as above.

mandatoryAlternative
When used in a FeatureLink: either the FeatureLink's start feature S or its end feature E
must be selected in any configuration: S xor E. Always bidirectional.

When used in a VariationGroup: this kind states that exactly(!) one element of the elements
denoted by association variableElement of the VariationGroup must be selected in any
valid final system configuration.

needs
When used in a FeatureLink: if the FeatureLink's start feature S is selected, then also its
end feature E must be selected: not (S and not E). Always unidirectional.

When used in a VariationGroup: assuming the ordered association variableElement in
meta-class VariationGroup refers to elements VE1, VEZ2, ..., VENn, this kind states that VE1
requires (i.e. may not appear without) all other elements VE2, VE3, ..., VEn.

optionalAlternative

When used in a FeatureLink: the FeaturelLink's start feature S and end feature E are
incompatible and must never be both selected in a single configuration: not (S and E).
Always bidirectional.

©2008-2010 The ATESST2 Consortium 34 (227)

EAST-ADL Domain Model Specification version 2.1

When used in a VariationGroup: this kind states that at most(!) one element of the
elements denoted by association variableElement of the VariationGroup must be selected
in any valid final system configuration.

e suggests
Weak form of "needs".

When used in a FeatureLink: if the FeatureLink's start feature S is selected, then usually(!)
also its end feature E must be selected. You can select S without E but you should have a
good reason to do so. Always unidirectional.

When used in a VariationGroup: accordingly as above.
Associations
No additional associations
Constraints
No additional constraints
Semantics

Predefined kinds of constraints that can be associated to a FeatureLink or VariationGroup.

©2008-2010 The ATESST2 Consortium 35 (227)

EAST-ADL Domain Model Specification version 2.1

5 VehicleFeatureModeling

51 Overview

At the highest abstraction level, i.e., the vehicle level, EAST-ADL provides support for
classification and definition of product lines (the entire vehicle for a car maker or some of its sub-
systems for suppliers). The different possible configurations of the embedded electronic
architecture are captured on a high abstraction level in terms of features. A feature in this sense is
a characteristic or trait that individual variants of the vehicle may or may not have.

The specification of the features themselves, together with their forms of realization, the
dependencies between them, and the requirements to be respected for their realization is
performed at the vehicle level and it should be done independently of any product line. This would
be the basis for a consistent reuse of features in different product lines and projects. At this level,
a feature represents particular high level requirements to be realized in all product line members
that respect some conditions, e.g., US cars with elegance trim and engine size higher than 2.4.

Conbext Context Cortext
watpStructureElements - FwehicleLevel catpStructureElements +technicalFeaturehodel patp St ctureEle ments
Systembdodeling:: 1 0.1 Systemhodeling:: " 0.4 o Featurahtodaling::
Systermiodel wehiclelLaewel FeatureModel
+ compliancelevel: String

0.1
+rootFeature |07

VehicleFeature Featum Treeliode
atpStructureElemeant:
+ isCustomerfisible: Boolean [:: F:a‘tl.flreModelin "Feat:lore
+ isDesignVfariabilityRationale: Boolean ek
+ izRemowed: Boolean + cardinality: String

+feature 1 #
Hentifzable

UserditibuteahleElement
+dewiationAttributeSet 0.1 Elements EAElenent

DeviationAttribote Set wenumerations + name: Sting [0..1]
+ allomChangefttribute: DeviationFermissionkind = wES e R e
+ allmwChangeCardinality: DeviationPermizzionkind = vES num +referring 1 Freference 1
+ allomChangelescription: DewiationFermissionkind = wES e
+ allowChangeMame: DeviationPermissionkind = YES + append:
+ allombdove: DeviationPermissionkind = WYES + subset:
+ allowReduction: DeviationPermiszionkind = YES + subtree:
+ allomRefinement: DeviationPermissionkind = VES & mfidkene Relationship
+ allmwRegrouping: DeviationPermissionkind = vES + yes Elemants::
+ allomRemowal: DeviationPermissionkind = YES Fulti Level Reference

Figure 5. Diagram for VehicleFeatureModeling.

5.2 Element Descriptions

5.2.1 DeviationAttributeSet (from VehicleFeatureModeling)

Generalizations

e EAElement (from Elements)

©2008-2010 The ATESST2 Consortium 36 (227)

EAST-ADL Domain Model Specification version 2.1

Description

DeviationAttributeSet specifies the set of rules of allowed deviations from the reference model in a
referring model. These rules are important, because they make sure that the different
FeatureModels, referring to one reference model, follow specific rules for deviation, so a later
integration into one FeatureModel might be possible.

Attributes

allowChangeAttribute : DeviationPermissionKind = YES [1]
This rule sets whether and how the VehicleFeature attributes may be changed. Allowed
values: no, append, yes.

allowChangeCardinality : DeviationPermissionKind = YES [1]
This rule sets whether and how the VehicleFeature cardinality (i.e. variability of the
VehicleFeature) may be changed. Allowed values: no, subset, yes.

allowChangeDescription : DeviationPermissionKind = YES [1]
This rule sets whether and how the VehicleFeature description may be changed. Allowed
values: no, append, yes.

allowChangeName : DeviationPermissionKind = YES [1]
This rule sets whether and how the VehicleFeature name may be changed. Allowed
values: no, append, yes.

allowMove : DeviationPermissionKind = YES [1]
This rule sets whether and how the VehicleFeature may be moved to another place in the
feature diagram. Allowed values: no, subtree, yes.

allowReduction : DeviationPermissionKind = YES [1]
This rule sets if the reference feature may have a child without a corresponding referring
feature among the children of the referring feature. Allowed values: no, subtree, yes.

allowRefinement : DeviationPermissionKind = YES [1]
This rule sets whether and how adding may be done of a child feature (without a
corresponding feature in the reference model). Allowed values: no, yes.

allowRegrouping : DeviationPermissionKind = YES [1]

This rule sets whether and how the immediate child features of the VehicleFeature are
allowed to be regrouped (i.e. creation or deletion of FeatureGroups below the respective
VehicleFeature). Allowed values: no, widen, yes.

allowRemoval : DeviationPermissionKind = YES [1]
This rule sets if the feature in the referring model (compared to the reference model) may
be deleted. Allowed values: no, yes.

Associations

feature : VehicleFeature [1]

The VehicleFeature that the deviation attributes belong to. The VehicleFeatures that are
part of a reference feature model in the context of multi-level feature models. The deviation
attribute can constrain the allowed deviation for the respective referring features.

Constraints

No additional constraints

Semantics

©2008-2010 The ATESST2 Consortium 37 (227)

EAST-ADL Domain Model Specification version 2.1

5.2.2

DeviationPermissionKind (from VehicleFeatureModeling) «enumeration»

Generalizations

None

Description

The DeviationPermissionKind is an enumeration with enumeration literals defining possible values
for deviation attributes.

Enumeration Literals

append
The name, description or other attribute may only be changed by appending text without
changing the original text. This kind is only applicable to deviation attributes

"allowChangeName", "allowChangeDescription" and "allowChangeAttribute".

no
The deviation is not allowed.

subset

The cardinality may only be changed such that the new cardinality is a subset of the
original cardinality. This kind is only applicable to deviation attribute
"allowChangeCardinality".

subtree
In case of deviation attribute "allowMove": the parent of the VehicleFeature may be
changed, but the original parent must remain a predecessor (i.e. moving the
VehicleFeature itself is allowed but it may only be moved further down within the same
subtree).

In case of deviation attribute "allowReduction": the children of the VehicleFeature may be
moved elsewhere, but they must remain successors of the VehicleFeature (i.e. moving
them away is allowed but they may only be moved further down within the same subtree).

This kind is only applicable to deviation attributes "allowMove" and "allowReduction".

widen

Feature groups may only be widened, i.e. it is only legal to add features into a feature
group that were not grouped before, but not to ungroup features. This kind is only
applicable to deviation attribute 'allowRegrouping'.

yes
The deviation is allowed.

Associations

No additional associations

Constraints

No additional constraints

Semantics

5.2.3

VehicleFeature (from VehicleFeatureModeling)

Generalizations

©2008-2010 The ATESST2 Consortium 38 (227)

EAST-ADL Domain Model Specification version 2.1

Feature (from FeatureModeling)

Description

VehicleFeature represents a special kind of feature intended for use on the vehicle level. The main
difference to features in general is that they provide support for the multi-level concept (with their
DeviationAttributeSet) and several additional attributes with meta-information specific to the
vehicle level viewpoint.

Attributes

isCustomerVisible : Boolean [1]
This attribute states whether the VehicleFeature is customer visible (in contrast to a
VehicleFeature that is e.g. technically driven).

VehicleFeatures describe the system's characteristics on the level of the complete system
and on a high abstraction level but they can still have a strong technical viewpoint.
Therefore, they are usually not suitable for being directly presented to the end-customer.
There are two approaches to deal with this situation.

(1) The simple approach uses this attribute to denote those VehicleFeatures that are
suitable for immediate end-customer configuration: if this attribute is set to true, then the
feature will be directly presented to the end-customer for selection or deselection; if set to
false, then the feature will be hidden from the end-customer and is thus reserved for
internal configuration.

(2) The more sophisticated approach is to define a dedicated product feature model
(available in the variability extension) in addition to the technical feature model on vehicle
level and to provide a configuration decision model that maps configurations of this end-
customer-oriented product feature model to the core technical feature model on vehicle
level. This approach is much more flexible because the customer-view on the product-line's
variability can be structured freely and independently from the core technical feature
model; furthermore this approach can cope much better with evolution because the end-
customer-oriented feature model can be evolved independently of the core technical
feature model (and vice versa). When applying this second approach, this attribute
isCustomerVisible will no longer be used, i.e. its value will be ignored.

The simple approach #1 is suitable for simple product line scenarios. Approach #2 should
be used for complex scenarios with large core technical feature models and/or longer
evolution periods of the overall product line infrastructure.

isDesignVariabilityRationale : Boolean [1]

A VehicleFeature marked as a design variability rationale captures a variant showing up on
a concrete artifact level that needs to be modeled on the VehicleLevel as well, in order to
be directly available for immediate configuration on vehicle level. It is, from the abstraction
layer's point of view, not a true vehicle-level feature.

If true, then isCustomerVisible is usually false but there may be rare exceptions.

isRemoved : Boolean [1]
This attribute describes if the VehicleFeature is removed (but kept in the database for
tracking of evolution, which is required by the multi-level concept).

Associations

deviationAttributeSet : DeviationAttributeSet [0..1]

Possible deviation attributes included in the VehicleFeature. If the VehicleFeature is part of
a reference feature model in the context of multi-level feature models, the attribute can
constrain the allowed deviations for the respective referring features.

Constraints

©2008-2010 The ATESST2 Consortium 39 (227)

EAST-ADL Domain Model Specification version 2.1

[1] VehicleFeatures can only be contained in FeatureModels on VehicleLevel.

Semantics

A VehicleFeature is a functional or non-functional characteristic, constraint or property that can be
present or not in a vehicle product line on the level of the complete system, i.e. vehicle.

©2008-2010 The ATESST2 Consortium 40 (227)

EAST-ADL Domain Model Specification version 2.1

6 FunctionModeling

6.1 Overview

The function modeling is performed in the FunctionalAnalysisArchitecture (in the AnalysisLevel)
and the FunctionalDesignArchitecture (in the DesignLevel). The root component of the function
compositional hierarchy on AnalysisLevel is the FunctionalAnalysisArchitecture (FAA); the root
component of the function compositional hierarchy on DesignLevel is the
FunctionalDesignArchitecture (FDA), see the diagram for SystemModeling.

The main modeling concept applied here is functional component modeling: Functions interact
with one another via ports that are connected by connectors owned by the composing function.
Occurrences of functions are modeled by typed prototypes in the composing function. These
occurrences are typed by types. This naming convention of the type-prototype pattern is from
AUTOSAR, however the concept of types and typed elements is also available in e.g. UML2.

Combext 0.1
0.1 +pafGEroup EAElement
watp Twpen Fort G :‘
FuncfionTyoe e o
+potEoup ©
+ izElementan: Boolean
+port lf‘
EAENmeant
! +port +port winstanceRefs EAElemant
-———————————— «:tpP;.ototgp;» (SEREEEEEEEEEEEPETEEEE «atpStructureElements
i ureHonTe 2 FunctionConnector
1 +eonnector
et
A EAEement
watpPrototypex
FuncfionP rofefyoe
AllacateableElenment HardwareMaodeling.:
% A Allocafion Target
+hipe wizsOfTypen
2l wsis FunctionType J’?\ 1 !
. . '
Anal ysi WP . Function Protot A +target1"?'\ 1
1 LT = AE i wpe +allocatedElement H
'
+part 1
- | «instanceRefs
f 0.1 i winstanceR efs B
EAElement
hageucuslbevice FunctionAllocation
+hype i
DesignFunctionType b wisDfTypex DesignFunction Prototype =
1 +functionAllacation
+part 1
[
0.1
fl Cambext EAElewent
Allocation

BasicSoftvware Function Type

Local DeviceManager

HardwareFunctionType

+hardwareComponant

Figure 6. Diagram for FunctionModeling.

©2008-2010 The ATESST2 Consortium

0.1

41 (227)

wdtp Typen

Hardwarehodeling:
Hardware ComponentType

EAST-ADL Domain Model Specification

version 2.1

Corhext
0.1
watpTypen +portGroup EAElement
Funcfion Tyae e FPortGroup ’—l
LA i
+ isElementary: Boolean +portGroup ®
wenumerations wenumerations
EADirectionkind rport N = +port Client Serverkind
2num EAElement EO0
+ in: + client:
+ inout: watpFrotatypes + =arcer
+ aut FurclionPorf
FunetionFlowFart Z% \ N
FunctionClient Server Port
+ direction: EADirectionkind A
FunctionPowser Port + clientServerType: ClientServerkind
wisOfTypex | f ElflT
wisOf Typen = TR
+type 4|41 +te.rpe\[/1
+hypea iy sl
Traceable Specifoation EAPzchagesbleElemeant
«atpTypes ‘:ﬂ DatE!‘types:: watp Types
Datzfypes EADizfype CompositeDatatype FunctionClient Server Interface
0.1
+typa
1 ?
. + ti =
aisOfTypes +datatypePrototype | 1.7 {ordered} eperation
Az ; +return EAElement
T 0.4 0.1 > Operation
i watpPrototypes v v
Datatypes::EADatatypePrototype
+argument
o
* forderad} 0.1

Figure 7. Diagram for FunctionPorts.

6.2

Element Descriptions

6.2.1

AllocateableElement (from FunctionModeling) {abstract}

Generalizations
None

Description

The AllocateableElement is an abstract superclass for elements that are allocateable.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

©2008-2010 The ATESST2 Consortium

42 (227)

EAST-ADL Domain Model Specification version 2.1

The AllocateableElement abstracts all elements that are allocateable.

Subclasses of the abstract class AllocateableElement add their own semantics.

6.2.2 Allocation (from FunctionModeling)

Generalizations

o EAElement (from Elements)
Description

The Allocation element contains functionAllocations. It can bundle functionAllocations that belong
together, e.g., all functionAllocations for a simulation.

Attributes
No additional attributes
Associations

¢ functionAllocation : FunctionAllocation [*]
The owned FunctionAllocations.

Constraints
No additional constraints
Semantics

The Allocation element contains functionAllocations, i.e., it can bundle functionAllocations that
belong together.

6.2.3 AnalysisFunctionPrototype (from FunctionModeling)

Generalizations

¢ FunctionPrototype (from FunctionModeling)
Description

The AnalysisFunctionPrototype represents references to the occurrence of the
AnalysisFunctionType that types it when it acts as a part.

The AnalysisFunctionPrototype is typed by an AnalysisFunctionType.
Attributes

No additional attributes

Associations

e type : AnalysisFunctionType [1]
«isOfType»

The type that defines this AnalysisFunctionPrototype.
Constraints
No additional constraints
Semantics

The AnalysisFunctionPrototype represents an occurrence of the AnalysisFunctionType that types
it.

©2008-2010 The ATESST2 Consortium 43 (227)

EAST-ADL Domain Model Specification version 2.1

6.2.4 AnalysisFunctionType (from FunctionModeling)

Generalizations

e FunctionType (from FunctionModeling)
Description

The AnalysisFunctionType is a concrete FunctionType and therefore inherits the elementary
function properties from the abstract metaclass FunctionType. The AnalysisFunctionType is used
to model the functional structure on AnalysisLevel. The syntax of AnalysisFunctionTypes is
inspired from the type-prototype pattern used by AUTOSAR.

The AnalysisFunctions may interact with other AnalysisFunctions (i.e., also FunctionalDevices)
through their FunctionPorts.

Furthermore, an AnalysisFunction may be decomposed into (sub-)AnalysisFunctions. This allows
the functionalities provided by the parent AnalysisFunction to be broken up hierarchically into
subfunctionalities.

A FunctionBehavior may be associated with each AnalysisFunction. In the case where the
AnalysisFunction is decomposed, the behavior is a specification for the composed behavior of the
subAnalysisFunction. If the AnalysisFunction is not decomposed (i.e., if the AnalysisFunction is
elementary), then the behavior is describing the behavior of the subAnalysisFunction, which is to
be used when building the global behavior of the FunctionalAnalysisArchitecture by composition of
the leaf behaviors.

Attributes
No additional attributes
Associations

e part : AnalysisFunctionPrototype [*]
The parts contained in this AnalysisFunctionType.

Constraints
[1] AnalysisFunctionTypes may only be used on AnalysisLevel.
Semantics

The AnalysisFunctionType represents a node in a tree structure corresponding to the functional
decomposition of a top level AnalysisFunction. The AnalysisFunction represents the analysis
function used to describe the functionalities provided by a vehicle on the AnalysisLevel. At the
AnalysisLevel, AnalysisFunctions are defined and structured according to the functional
requirements, i.e., the functionalities provided to the user.

6.2.5 BasicSoftwareFunctionType (from FunctionModeling)

Generalizations

e DesignFunctionType (from FunctionModeling)
Description

The BasicSoftwareFunctionType is an abstraction of middleware functionality.
Attributes
No additional attributes

Associations

©2008-2010 The ATESST2 Consortium 44 (227)

EAST-ADL Domain Model Specification version 2.1

No additional associations
Constraints

No additional constraints
Semantics

The BasicSoftwareFunctionType is an abstraction of the middleware.

6.2.6 ClientServerKind (from FunctionModeling) «enumeration»

Generalizations
None
Description

This element is an enumeration for the kind of the FunctionClientServerPort, which can either be a
“client" or a "server".

Enumeration Literals

e client
e server
Associations

No additional associations
Constraints

No additional constraints
Semantics

The ClientServerKind is an enumeration with the two literals "client" and "server".

6.2.7 DesignFunctionPrototype (from FunctionModeling)

Generalizations

o AllocateableElement (from FunctionModeling)
¢ FunctionPrototype (from FunctionModeling)
Description

The DesignFunctionPrototype represents references to the occurrence of the DesignFunctionType
that types it when it acts as a part.

The DesignFunctionPrototype is typed by a DesignFunctionType .
Attributes

No additional attributes

Associations

e type : DesignFunctionType [1]
«isOfType»

The type that defines this DesignFunctionPrototype.
Constraints

No additional constraints

©2008-2010 The ATESST2 Consortium 45 (227)

EAST-ADL Domain Model Specification version 2.1

Semantics

The DesignFunctionPrototype represents an occurrence of the DesignFunctionType that types it.

6.2.8 DesignFunctionType (from FunctionModeling)

Generalizations

¢ FunctionType (from FunctionModeling)
Description

The DesignFunctionType is a concrete FunctionType and therefore inherits the elementary
function properties from the abstract metaclass FunctionType. The DesignFunctionType is used to
model the functional structure on DesignLevel. The syntax of DesignFunctionTypes is inspired by
the type-prototype pattern used by AUTOSAR.

The DesignFunctions may interact with other DesignFunctions (i.e., also BasicSoftwareFunctions,
HardwareFunctions, and LocalDeviceManagers) through their FunctionPorts.

Furthermore, a DesignFunction may be decomposed into (sub-)DesignFunctions. This allows the
functionalities provided by the parent DesignFunction to be broken up hierarchically into
subfunctionalities.

Execution time constraints on the DesignFunctionType can be expressed by
ExecutionTimeConstraints, see the Timing package.

If two or more occurrences of an elementary Function are allocated on the same ECU, the code
will be placed on the ECU only once (so these occurrences will use the same code but separate
memory areas for data).

Attributes
No additional attributes
Associations

e part : DesignFunctionPrototype [*]
The parts contained in this DesignFunctionType.

Constraints
[1] DesignFunctionTypes may only be used on DesignLevel.
Semantics

The DesignFunctionType represents a node in a tree structure corresponding to the functional
decomposition of a top level DesignFunction. The DesignFunction represents the design function
used to describe the functionalities provided by a vehicle on the DesignLevel. At the DesignLevel,
DesignFunctions are defined and structured according to the functional and hardware system
design.

6.2.9 EADirectionKind (from FunctionModeling) «enumeration»

Generalizations
None

Description

wenoon

This element is an enumeration for the direction of a Port, which can either be "in",

"inout".

out", or

©2008-2010 The ATESST2 Consortium 46 (227)

EAST-ADL Domain Model Specification version 2.1

Enumeration Literals

e in
e inout
e out

Associations

No additional associations
Constraints

No additional constraints
Semantics

The EADirectionKind is an enumeration with the three literals "in", "out", and "inout".

6.2.10 FunctionalDevice (from FunctionModeling)

Generalizations

e AnalysisFunctionType (from FunctionModeling)
Description

The FunctionalDevice represents an abstract sensor or actuator that encapsulates sensor/actuator
dynamics and the interfacing software. The FunctionalDevice is the interface between the
electronic architecture and the environment (connected by ClampConnectors). As such, it is a
transfer function between the AnalysisFunction and the physical entity that it measures or
actuates.

A Realization dependency can be used for traceability between LocalDeviceManagers and
Sensors/Actuators that are represented by the FunctionalDevice.

Attributes

No additional attributes
Associations

No additional associations
Constraints

No additional constraints.
Semantics

The behavior associated with the FunctionalDevice is the transfer function between the
environment model representing the environment and an AnalysisFunction. The transfer function
represents the sensor or actuator and its interfacing hardware and software (connectors,
electronics, infout interface, driver software, and application software).

6.2.11 FunctionAllocation (from FunctionModeling)

Generalizations

e EAElement (from Elements)
Description

FunctionAllocation represents an allocation constraint binding an AllocateableElement
(computation functions or communication connectors) on an AllocationTarget (computation or
communication resource).

©2008-2010 The ATESST2 Consortium 47 (227)

EAST-ADL Domain Model Specification version 2.1

The same constraint could be expressed in a textual generic constraint.
Attributes

No additional attributes

Associations

No additional associations

Dependencies

¢ allocatedElement : AllocateableElement [1]
«instanceRef»

e target: AllocationTarget [1]
«instanceRef»

Constraints
No additional constraints
Semantics

AllocationTarget is specialized by HardwareComponentPrototype in the HardwareModeling
package and AllocateableElement is specialized by the concrete elements
DesignFunctionPrototype and FunctionConnector in the FunctionModeling package.

6.2.12 FunctionClientServerinterface (from FunctionModeling) «atpType»

Generalizations

o EAPackageableElement (from Elements)
Description

The FunctionClientServerinterface is used to specify the operations in FunctionClientServerPorts.
Attributes

No additional attributes

Associations

e operation : Operation [*]
The owned Operation.

Constraints
No additional constraints
Semantics

The operations of the FunctionClientServerinterface are required or provided through the
FunctionClientServerPorts typed by the FunctionClientServerinterface.

6.2.13 FunctionClientServerPort (from FunctionModeling)

Generalizations

e FunctionPort (from FunctionModeling)
Description

The FunctionClientServerPort is a FunctionPort for client-server interaction. A number of
FunctionClientServerPorts of clientServerType “client" can be connected to one

©2008-2010 The ATESST2 Consortium 48 (227)

EAST-ADL Domain Model Specification version 2.1

FunctionClientServerPort of clientServerType "server", i.e. when connected the multiplicity for the
connection is n to 1 for client and server.

Attributes

o clientServerType : ClientServerKind [1]
Associations

e type : FunctionClientServerinterface [1]
«isOfType»

The interface of this FunctionClientServerPort.
Constraints

[1] A FunctionClientServerPort of clientServerType "client" can only be connected to one
FunctionClientServerPort of clientServerType "server".

Semantics

The FunctionClientServerPort is a FunctionPort for client-server interaction.

FunctionClientServerPorts are single buffer overwrite and nonconsumable.

6.2.14 FunctionConnector (from FunctionModeling) «atpStructureElement»

Generalizations

o AllocateableElement (from FunctionModeling)
o EAElement (from Elements)
Description

The FunctionConnector indicates that the connected FunctionPorts exchange signals or client-
server requests/responses.

Attributes

No additional attributes
Associations

No additional associations
Dependencies

e port : FunctionPort [2]
«instanceRef»

Constraints

[1] Can connect two FunctionFlowPorts of different directions when this is an assembly
FunctionConnector.

[2] Can connect two FunctionFlowPorts of the same direction when this is a delegation
FunctionConnector.

[3] Can connect two ClientServerPorts of different kinds when this is an assembly
FunctionConnector.

[4] Can connect two ClientServerPorts of the same kind when this is a delegation
FunctionConnector.

[5] Can connect two FunctionFlowPorts with direction inout.

©2008-2010 The ATESST2 Consortium 49 (227)

EAST-ADL Domain Model Specification version 2.1

Semantics

The FunctionConnector connects a pair of FunctionFlowPorts or FunctionClientServerPorts. If two
FunctionFlowPorts are connected, data elements of the type of the output FunctionFlowPort flow
from the output FunctionFlowPort to the input FunctionFlowPort. If FunctionClientServerPorts are
connected, the client calls the server according to the operations of the interfaces. The occurrence
of the FunctionType that specifies the occurrence of the FunctionPrototype has to be identified by
the FunctionConnector as well.

The FunctionConnector is normally routed according to the hardware topology and the allocation
of source and destination. If there are redundant paths, a FunctionAllocation may be used to
prescribe allocation.

6.2.15 FunctionFlowPort (from FunctionModeling)

Generalizations

¢ FunctionPort (from FunctionModeling)
Description

The FunctionFlowPort is a metaclass for flowports, inspired by the SysML FlowPort.
Attributes

e direction : EADirectionKind [1]
Associations

o type : EADatatype [1]
«isOfType»

The single EADatatype for this port.
Constraints
No additional constraints
Semantics
FunctionFlowPorts are single buffer overwrite and nonconsumable.
FunctionFlowPorts can be connected if their FunctionPort signatures match; i.e.:
EADatatypes that are ValueTypes are compatible if
* They have the same "dimension".
* They have the same "unit".
EADatatypes that are RangeableValueTypes are compatible if
* The source EADatatype has the same or better "accuracy".
* They have the same baseRangeable.
* The source EADatatype has the same or smaller "maxValue".
* The source EADatatype has the same or higher "minValue".
* The source EADatatype has the same or higher "resolution".
* They have the same "significantDigits".
EADatatypes that are EnumerationValueTypes are compatible if

* They have the same baseEnumeration.

©2008-2010 The ATESST2 Consortium 50 (227)

EAST-ADL Domain Model Specification version 2.1

A FunctionFlowPort with direction=in is called an input FunctionFlowPort:

The input FunctionFlowPort indicates that the containing Function requires input data. The
EADatatype of this data is defined by the associated EADatatype. The data is sampled at the
invocation of the containing entity for discrete Functions. For continuous Functions, the input
FunctionFlowPort represents a continuous input connection point.

The input FunctionFlowPort declares a reception point of data. It represents a single element
buffer, which is overridden with the latest data. The type of the data is defined by the associated
EADatatype.

A FunctionFlowPort with direction=out is called an output FunctionFlowPort:

The output FunctionFlowPort indicates that the containing Function provides output data. The
EADatatype of this data is defined by the associated EADatatype. The data is sent at the
completion of the containing entity for discrete Functions. For continuous Functions, the output
FunctionFlowPort represents a (time-)continuous output connection point.

The output FunctionFlowPort declares a transmission point of data. The type of the data is defined
by the associated EADatatype.

6.2.16 FunctionPort (from FunctionModeling) {abstract} «atpPrototype»

Generalizations

o EAElement (from Elements)
Description

The ports conserve variables for component interaction.
Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

6.2.17 FunctionPowerPort (from FunctionModeling)

Generalizations

e FunctionPort (from FunctionModeling)
Description

The FunctionPowerPort is a FunctionPort for denoting the physical interactions between
environment and sensing/actuation functions.

Attributes
No additional attributes
Associations

e type : CompositeDatatype [1]

©2008-2010 The ATESST2 Consortium 51 (227)

EAST-ADL Domain Model Specification version 2.1

«isOfType»

The Datatype for the flow physical variables of this FunctionPowerPort, specifying the
Across and Through variables with two separate datatypePrototypes.

Constraints

[1] The owner of a FunctionPowerPort is either a FunctionalDevice, a HardwareFunctionType, or a
FunctionType for environment

[2] Two connected FunctionPowerPort must have the same Datatype.

[3] The typing Datatype shall have two datatypePrototypes called Across and Through, with
Datatypes that are consistent and representing the variables of the PowerPort.

Semantics

The FunctionPowerPort conserves physical variables in a dynamic process.

The typing Datatype owns two datatypePrototypes called Across and Through, representing the
exchanged physical variables of the FunctionPowerPort. In two or more directly connected
function power ports, the Across variables always get the same value and the Through variables
always sum up to zero.

6.2.18 FunctionPrototype (from FunctionModeling) {abstract} «atpPrototype»

Generalizations

o EAElement (from Elements)
Description

FunctionPrototype represents a reference to the occurrence of a FunctionType when it acts as a
part.

The FunctionPrototype is typed by a FunctionType.

FunctionTrigger in the Behavior package is associated with a FunctionPrototype.
Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

The FunctionPrototype represents an occurrence of the FunctionType that types it.

6.2.19 FunctionType (from FunctionModeling) {abstract} «atpType»

Generalizations

e Context (from Elements)
Description

©2008-2010 The ATESST2 Consortium 52 (227)

EAST-ADL Domain Model Specification version 2.1

The abstract metaclass FunctionType abstracts the function component types that are used to
model the functional structure, which is distinguished from the implementation of component types
using AUTOSAR. The syntax of FunctionTypes is inspired from the concept of Block from SysML.

FunctionBehavior and FunctionTrigger in the Behavior package are associated to a FunctionType.
Attributes

e isElementary : Boolean [1]
True, when this type must not have any parts.

Associations

e port : FunctionPort [*]
Owned ports.

e connector : FunctionConnector [*]
The connectors that connect ports of parts as assembly connectors or ports of this type
and ports of parts as delegation connectors.

e portGroup : PortGroup [*]
Grouping of ports owned by this element.

Constraints
[1] Elementary FunctionTypes shall not have parts.
Semantics

The FunctionType abstracts the function component types that are used to model the functional
structure on AnalysisLevel and DesignLevel.

Leaf functions of an EAST-ADL function hierarchy are called elementary Functions.
Elementary Functions have synchronous execution semantics:

1. Read inputs

2. Execute (duration: Execution time)

3. Write outputs

Execution is defined by a behavior that acts as a transfer function.

Subclasses of the abstract class FunctionType add their own semantics.

If a behavior is attached to the FunctionType, the execution semantic for a discrete elementary
FunctionType complies with the run-to-completion semantic. This has the following implications:

1. Input that arrives at the input FunctionPorts after execution begins will be ignored until the next
execution cycle.

2. If more than one input value arrives per FunctionPort before execution begins, the last value will
override all previous ones in the public part of the input FunctionPort (single element buffers for
input).

3. The local part of a FunctionPort does not change its value during execution of the behavior.

4. During an execution cycle, only one output value can be sent per FunctionPort. If consecutive
output values are produced on the same FunctionPort during a single execution cycle, the last
value will override all previous ones on the output FunctionPort (single element buffers for output).

5. Output will not be available at an output FunctionPort before execution ends.

6. Elementary FunctionTypes may not produce any side effects (i.e., all data passes the
FunctionPorts).

©2008-2010 The ATESST2 Consortium 53 (227)

EAST-ADL Domain Model Specification version 2.1

6.2.20 HardwareFunctionType (from FunctionModeling)

Generalizations

e DesignFunctionType (from FunctionModeling)
Description

The HardwareFunctionType is the transfer function for the identified HardwareComponentType or
a specification of an intended transfer function. HardwareFunctionType types
DesignFunctionPrototypes in the FunctionalDesignArchitecture. The Such
DesignFunctionPrototypes are typically at the end of the ClampConnectors on DesignLevel.

DesignFunctionPrototypes typed by HardwareFunctionType may be allocated to
HardwareComponents in which case the HardwareFunctionType must match the
HardwareFunctionType of the target HardwareComponent. Typically, the same
HardwareFunctionType types the prototype that is allocated to its target HardwareComponent.

HardwareFunctionTypes are typically transfer functions of sensors, actuators, amplifiers and other
peripherals with a fixed transfer function. Thus, HardwareFunctionTypes are generally not defined
for ECUNodes.

Attributes
No additional attributes
Associations

e hardwareComponent : HardwareComponentType [0..1]
The HardwareComponentType with the specified HardwareFunction.

Constraints

[1] A DesignFunctionPrototype typed by a HardwareFunctionType shall be connected to the
EnvironmentModel via ClampConnectors and to BSWFunctions via FunctionConnectors.

Semantics

The HardwareFunctionHardwareFunctionType is the transfer function for the associated hardware
components such as sensors, actuators, amplifiers, etc or a specification of an intended transfer
function.

HardwareFunctions can be allocated to Sensors or Actuators, i.e. the interfacing element to the
plant model.

6.2.21 LocalDeviceManager (from FunctionModeling)

Generalizations

e DesignFunctionType (from FunctionModeling)
Description

The LocalDeviceManager represents a DesignFunction that act as a manager or functional
interface to Sensors, Actuators and other devices. It is responsible for translating between the
electrical/logical interface of the device, as provided by a BasicSoftwareFunction, and the physical
interface of the device. For example, consider a temperature sensor with voltage output. The
HardwareFunctionType defines the transfer from temperature to voltage. A BasicSoftwareFunction
relays the voltage from the microcontroller's 1/0. The role of the LocalDeviceManager is now to
translate from voltage to temperature value, taking into account the sensor’s characteristics such
as nonlinearities, calibration, etc. The resulting temperature is available to the other

©2008-2010 The ATESST2 Consortium 54 (227)

EAST-ADL Domain Model Specification version 2.1

DesignFunctions. By separating the device specific part from the middleware and ECU specific
parts, it is possible to systematically change interface function together with the device.

Attributes

No additional attributes
Associations

No additional associations
Constraints

[1] A DesignFunctionPrototype typed by a LocalDeviceManager shall be allocated to the same
ECU node as the device that it manages is connected to.

[2] A LocalDeviceManager may only interface either Sensors or Actuators.
[3] A LocalDeviceManager shall interface BSWFunctions and DesignFunctions.
Semantics

The LocalDeviceManager encapsulates the device-specific or functional parts of a Sensor or
Actuator, device, etc. interface.

6.2.22 Operation (from FunctionModeling)

Generalizations

¢ EAElement (from Elements)
Description

The Operation is the provided/required operation of a FunctionClientServerinterface. It can specify
its return values and arguments by EADatatypePrototypes.

Attributes
No additional attributes
Associations

e argument : EADatatypePrototype [*] {ordered}
The argument value of the Operation.

e return : EADatatypePrototype [0..1]
The return value of the Operation.

Constraints
No additional constraints

Semantics

The Operation is the provided/required operation of a FunctionClientServerinterface.

6.2.23 PortGroup (from FunctionModeling)

Generalizations

e EAElement (from Elements)
Description

©2008-2010 The ATESST2 Consortium 55 (227)

EAST-ADL Domain Model Specification version 2.1

The PortGroup represents several FunctionPorts grouped into one. All FunctionPorts that are part
of a PortGroup are graphically represented as a single FunctionPort. The PortGroup has no
semantic meaning except that it makes graphical representation of the connected FunctionPorts
easier to read, and provides a means to logically organize several FunctionPorts into one group.

Connectors are still connected to the contained FunctionPorts, but tool support may simplify
connections by allowing semiautomatic or automatic connection to all FunctionPorts of a
PortGroup.

Note that the term "PortGroup" is also used by AADL.
Attributes

No additional attributes

Associations

e port : FunctionPort [*]
The grouped FunctionPorts.

e portGroup : PortGroup [*]
Grouping of ports owned by this element.

Constraints

[1] The FunctionPorts in a PortGroup must all be of the same component; all FunctionPorts in a
PortGroup must be of the same kind (FunctionFlowPort with same EADirectionKind or
FunctionClientServerPort with same ClientServerKind).

Semantics

The PortGroup provides the means to organize FunctionPorts and FunctionConnectors. It does
not add semantics. In the model, the FunctionPorts contained in the PortGroup are connected as
individual FunctionPorts.

©2008-2010 The ATESST2 Consortium 56 (227)

EAST-ADL Domain Model Specification version 2.1

7 HardwareModeling

7.1 Overview

The package HardwareModeling contains the elements to model physical entities of the
embedded electrical/electronic system. These elements allow the hardware to be captured in
sufficient detail to allow preliminary allocation decisions.

The allocation decisions are based on requirements on timing, storage, data throughput,
processing power, etc. that are defined in the Functional Analysis Architecture and the Functional

Design Architecture.

Conversely, the Functional Analysis Architecture and the Functional Design Architecture may be
revised based on analysis using information from the Hardware Design Architecture. An example
is control law design, where algorithms may be modified for expected computational and
communication delays. Thus, the Hardware Design Architecture contains information about
properties in order to support, e.g., timing analysis and performance in these respects.

DesignFunction Tipe
Combext
+hardwareComponant FunctionModeling: Pt |
" watpTypes A1 HardwareFunctionType AllocateableElement ST . |
zrdvware Componert Type 1 e
winstanceRefs -~ _ EAElemant
+part
- 1 F e Functionhodeling::
+ype watpPrototypes FunctionAllocation
- Hardware Component Prototype
1 «isOfTypes +target
NocationTarget (€577 1100 R
EAElement 1
+bus watpStructuredElements
- Logical Bus X R
«enumerations «enumerations
+ busSpeed: Float Logical BusKind HardwarePinDirectionkind
+ busType: LogicalBuskind
T enum enum
sinstanceRefs + TimeTriggered: + in:
o + EventTriggered: + inout:
+wue\‘{ + TimeandEwentTriggerad: + out:
EAElement + other
-.‘.#1 Hardware Connector +port EAElement
+ resistance: Float [0.1] sinstanceRefe 2 «atpStruc{ureEle_ment»
HardwarePin
= +port
- + tion: EADirectionkind [0..1]
1 + i d : Float [0..1
T otpert | :;neﬁ:u:g-ceaoor:;nm[n l]
-
. - ! + power. Flaat [1..1]
‘ 0.1 +portGroup HardwarePinGroup + woltage: Float[d..1]
[f +pofGroup ® UUJ ‘
Fovveer Supply CommunicationHardwarePin Povwer HardwareFin
Sensor + izfuective: Boolean N
«enumerations i
|0HardwareFinkind |0HardwarePin
Mode + type: IOHardwarePinkind

+ executionRate: Float=1.0
+ nonolatileMemaon : int
+ wolatileMemony: int [0..1]

Figure 8. Diagram for HardwareModeling.

enum
+ digital:
+ analog:
+ pam:
+ other

7.2

Element Descriptions

7.2.1

Actuator (from HardwareModeling)

Generalizations

©2008-2010 The ATESST2 Consortium

57 (227)

EAST-ADL Domain Model Specification version 2.1

¢ HardwareComponentType (from HardwareModeling)
Description

The Actuator is the element that represents electrical actuators, such as valves, motors, lamps,
brake units, etc. Non-electrical actuators such as the engine, hydraulics, etc. are considered part
of the plant model (environment). Plant models are not part of the Hardware Design Architecture.

Attributes

No additional attributes
Associations

No additional associations
Constraints

No additional constraints
Semantics

The Actuator metaclass represents the physical and electrical aspects of actuator hardware. The
logical aspect is represented by a HWFunctionType associated with the Actuator.

7.2.2 AllocationTarget (from HardwareModeling) {abstract}

Generalizations

None

Description

The AllocationTarget is a superclass for elements to which AllocateableElements can be allocated.
Attributes

No additional attributes
Associations

No additional associations
Constraints

No additional constraints
Semantics

An AllocationTarget is a resource element in the Hardware Design Architecture which may host
functional behaviors in the Functional Design Architecture.

7.2.3 CommunicationHardwarePin (from HardwareModeling)

Generalizations

e HardwarePin (from HardwareModeling)
Description

CommunicationHardwarePin represents an electrical connection point that can be used to define
how the wire harness is logically defined.

Attributes

No additional attributes

©2008-2010 The ATESST2 Consortium 58 (227)

EAST-ADL Domain Model Specification version 2.1

Associations

No additional associations
Constraints

No additional constraints
Semantics

The CommunicationHardwarePin represents the hardware connection point of a communication
bus.

Depending on modeling style, one or two pins may be defined for a dual-wire bus.

7.2.4 HardwareComponentPrototype (from HardwareModeling) «atpPrototype»

Generalizations

¢ EAElement (from Elements)
e AllocationTarget (from HardwareModeling)
Description

Appears as part of a HardwareComponentType and is itself typed by a HardwareComponentType.
This allows for a reference to the occurrence of a HardwareComponentType when it acts as a
part. The purpose is to support the definition of hierarchical structures, and to reuse the same type
of Hardware at several places. For example, a wheel speed sensor may occur at all four wheels,
but it has a single definition.

Attributes
No additional attributes
Associations

e type : HardwareComponentType [1]
«isOfType»

Constraints
No additional constraints
Semantics

The HardwareComponentPrototype represents an occurrence of a hardware element, according to
the type of the HardwareComponentPrototype.

7.2.5 HardwareComponentType (from HardwareModeling) «atpType»

Generalizations

e Context (from Elements)
Description

The HardwareComponentType represents hardware element on an abstract level, allowing
preliminary engineering activities related to hardware.

Attributes
No additional attributes

Associations

©2008-2010 The ATESST2 Consortium 59 (227)

EAST-ADL Domain Model Specification version 2.1

e connector : HardwareConnector [*]
Connectors owned by this element.

e part : HardwareComponentPrototype [*]
Parts owned by this element.

e portGroup : HardwarePinGroup [*]
PortGroups of owned by this element.

e port : HardwarePin [*]
Hardware ports owned by this type.

e bus: LogicalBus [*]
The LogicalBus contained in the HardwareComponent

Constraints
No additional constraints
Semantics

The HardwareElementType is a structural entity that defines a part of an electrical architecture.
Through its ports it can be connected to electrical sources and sinks. Its logical behavior, the
transfer function, may be defined in an HWFunctionType referencing the HardwareElementType.
This is typically connected through its ports to the environment model to participate in the end-to-
end behavioral definition of a function.

7.2.6 HardwareConnector (from HardwareModeling) «atpStructureElement»

Generalizations

o EAElement (from Elements)
Description

Hardware connectors represent wires that electrically connect the hardware components through
its ports.

Attributes

e resistance : Float [0..1]
The resistance of the HardwareConnector in Ohms.

Associations
No additional associations
Dependencies

e port : HardwarePin [2]
«instanceRef»

Constraints
No additional constraints
Semantics

The connector joins the two referenced ports electrically, with a resistance defined by the
resistance attribute.

7.2.7 HardwarePin (from HardwareModeling) {abstract} «atpStructureElement»

©2008-2010 The ATESST2 Consortium 60 (227)

EAST-ADL Domain Model Specification version 2.1

Generalizations

o EAElement (from Elements)
Description

HardwarePin represents electrical connection points in the hardware architecture. Depending on
modeling style, the actual wire or a logical connection can be considered.

Attributes

e direction : EADirectionKind [0..1]
The direction of current through the pin.

e impedance : Float [0..1]
The internal impedance in Ohms to ground of the component as seen through this pin.

e isGround : Boolean [0..1]
Indicates that the pin is connected to ground.

e power : Float [0..1]
The maximal power in watts that can be provided by this pin or that is consumed.

e voltage : Float [0..1]
The maximal voltage in Volts provided by the pin. Shall not be defined if isGround=TRUE.

Associations

No additional associations
Constraints

No additional constraints
Semantics

Hardware pin represents an electrical connection point.

7.2.8 HardwarePinDirectionKind (from HardwareModeling) «enumeration»

Generalizations
None
Description

This element is an enumeration for the direction of the HardwarePin, which can either be "in",
"out", or "inout".

Enumeration Literals

e in
e inout
e oOut

Associations

No additional associations
Constraints

No additional constraints
Semantics

The HardwarePinDirectionKind is an enumeration with the three literals "in", "out", and "inout".

©2008-2010 The ATESST2 Consortium 61 (227)

EAST-ADL Domain Model Specification version 2.1

7.2.9 HardwarePinGroup (from HardwareModeling)

Generalizations

o EAElement (from Elements)
Description

The HardwarePinGroup provides means to organize hardware pins to improve readability of the
component interface and connectors between components. Tools may show the set of ports in the
pin group as a single pin, and join connectors that go between pins in pin groups to a single line.

Attributes
No additional attributes
Associations

e portGroup : HardwarePinGroup [*]
e port : HardwarePin [*]
Constraints

No additional constraints
Semantics

A HardwarePinGroup has no semantics, but is only a grouping mechanism that may affect
visualization and port operations in tools.

7.2.10 IOHardwarePin (from HardwareModeling)

Generalizations

o HardwarePin (from HardwareModeling)
Description

IOHardwarePin represents an electrical connection point for digital or analog I/0.
Attributes

o type : IOHardwarePinKind [1]
kind defines whether the IOHardwarePort is digital, analog or PWM (Pulse Width
Modulated).

Associations

No additional associations
Constraints

No additional constraints
Semantics

The IOHardwarePin represents an electrical pin or connection point.

7.2.11 IOHardwarePinKind (from HardwareModeling) «enumeration»

Generalizations
None

Description

©2008-2010 The ATESST2 Consortium 62 (227)

EAST-ADL Domain Model Specification version 2.1

IOHardwarePinKind is an enumeration type representing different kinds of I/O Hardware Ports.
Enumeration Literals

¢ analog
I/O with varying amplitude.

o (igital
I/0 with fixed amplitude.

e other
Another type of 1/O port.

e pwm
PWM (Pulse Width Modulated) modulated 1/O, i.e. a signal with fixed frequency and
amplitude but varying duty cycle.

Associations

No additional associations
Constraints

No additional constraints

Semantics

7.2.12 LogicalBus (from HardwareModeling) «atpStructuredElement»

Generalizations

e AllocationTarget (from HardwareModeling)
o EAElement (from Elements)
Description

The LogicalBus represents logical communication channels. It serves as an allocation target for
connectors, i.e. the data exchanged between functions in the FunctionalDesignArchitecture.

Attributes

e busSpeed : Float [1]
The net bus speed in bits per second. Used to assess communication delay and
schedulability on the bus. Note that scheduling details are not represented in the model.

e busType : LogicalBusKind [1]
The type of bus scheduling assumed.

Associations
No additional associations
Dependencies

e wire : HardwareConnector [*]
«instanceRef»

Constraints
No additional constraints

Semantics

©2008-2010 The ATESST2 Consortium 63 (227)

EAST-ADL Domain Model Specification version 2.1

The LogicalBus represents a logical connection that carries data from any sender to all receivers.
Senders and receivers are identified by the wires of the LogicalBus, i.e. the associated
HardwareConnectors. The available busSpeed represents the maximum amount of useful data
that can be carried. The busSpeed has already deducted speed reduction resulting from frame
overhead, timing effects, etc.

7.2.13 LogicalBusKind (from HardwareModeling) «enumeration»

Generalizations

None

Description

LogicalBusKind is an enumeration type representing different kinds of busses.
Enumeration Literals

o EventTriggered
Bus is event-triggered

e other
Another type of bus communication

¢ TimeandEventTriggered
Bus is both time and event-triggered

e TimeTriggered
Bus is time-triggered

Associations

No additional associations
Constraints

No additional constraints

Semantics

7.2.14 Node (from HardwareModeling)

Generalizations

e HardwareComponentType (from HardwareModeling)
Description

Node represents the computer nodes of the embedded electrical/electronic system. Nodes consist
of processor(s) and may be connected to sensors, actuators and other ECUs via a BusConnector.

Node denotes an electronic control unit that acts as a computing element executing Functions. In
case a single CPU-single core ECU is represented, it is sufficient to have a single, non-hierarchical
Node.

Attributes

e executionRate : Float = 1.0 [1]
ExecutionRate is used to compute an approximate execution time. A nominal execution
time divided by executionRate provides the actual execution time to be used e.g. for timing
analysis in feasibility studies.

©2008-2010 The ATESST2 Consortium 64 (227)

EAST-ADL Domain Model Specification version 2.1

¢ nonVolatileMemory : int [1]
The size in Bytes of the Node’s Non-Volatile memory (ROM, NRAM, EPROM, etc.).

e volatileMemory : int [0..1]
The size in Bytes of the Node’s Volatile memory (RAM)

Associations

No additional associations
Constraints

No additional constraints
Semantics

The Node element represents an ECU, i.e. an Electronic Control Unit, and an allocation target of
FunctionPrototypes.

The Node executes its allocated FunctionPrototypes at the specified executionRate. The
executionRate denotes how many execution seconds of an allocated functionPrototype’s
execution time are processed in each real-time second. Actual execution time is thus found by
dividing the parameters of the ExecutionTimeConstraint with executionRate.

Example: If an ECU is 25% faster than a standard ECU (e.g., in a certain context, execution times
are given assuming a nominal speed of 100 MHz; our CPU is then 125 MHz), the executionRate is
1.25. An execution time of 5 ms would then become 4 ms on this ECU.

7.2.15 PowerHardwarePin (from HardwareModeling)

Generalizations

¢ HardwarePin (from HardwareModeling)
Description

PowerHardwarePin represents a pin that is primarily intended for power supply, either providing or
consuming energy.

Attributes

No additional attributes
Associations

No additional associations
Constraints

No additional constraints
Semantics

A PowerHardwarePin is primarily intended to be a power supply. The direction attribute of the pin
defines whether it is providing or consuming energy.

7.2.16 PowerSupply (from HardwareModeling)

Generalizations

e HardwareComponentType (from HardwareModeling)
Description

PowerSupply represents a hardware element that supplies power.

©2008-2010 The ATESST2 Consortium 65 (227)

EAST-ADL Domain Model Specification version 2.1

Attributes

e isActive : Boolean [1]
Indicates if the PowerSupply is active or passive.

Associations

No additional associations
Constraints

No additional constraints
Semantics

PowerSupply denotes a power source that may be active (e.g., a battery) or passive (main relay).

7.2.17 Sensor (from HardwareModeling)

Generalizations

¢ HardwareComponentType (from HardwareModeling)
Description

Sensor represents a hardware entity for digital or analog sensor elements. The Sensor is
connected electrically to the electrical entities of the Hardware Design Architecture.

Attributes

No additional attributes
Associations

No additional associations
Constraints

No additional constraints
Semantics

Sensor denotes an electrical sensor. The Sensor represents the physical and electrical aspects of
sensor hardware. The logical aspect is represented by an HWFunctionType associated with the
Sensor.

©2008-2010 The ATESST2 Consortium 66 (227)

EAST-ADL Domain Model Specification version 2.1

8 Environment

8.1 Overview

The Environment model is used to describe the environment of the vehicle electric and electronic
architecture. It is modeled by continuous functions representing the system environment.

Cowrhext
Erwironmert

1

+elampConnector /

+environmenthlodel

EAElement| © EAElememt
watpStructureElements watpPrototypes
ClampConnectar FunciionWodelirg:: FurciionProfoiyoe

winstanceRefa

+port ".i.")
EAElement Comhart
watpPrototypex +port watpTypes
Funcfron.!l'?ode.'mg:: A Funchion Madelimg: Furciion Tyoe
FuncfiorPort § 1
+ isElementary: Boalean

Figure 9. Diagram for Environment. The EnvironmentModel is a packageable element, but note that it
is not a part of the SystemModel.

8.2 Element Descriptions

8.2.1 ClampConnector (from Environment) «atpStructureElement»

Generalizations

e EAElement (from Elements)
Description

The clamp connector connects ports across function boundaries and containment hierarchies. It is
used to connect from an EnvironmentModel to the FunctionalAnalysisArchitecture, the
FunctionalDesignArchitecture, the autosarSystem or another EnvironmentModel. Typically, the
EnvironmentModel contains physical ports, which restrict the wvalid ports in the
FunctionalAnalysisArchitecture to those on FunctionalDevices and in the
FunctionalDesignArchitecture to those on HardwareFunctions. In case the connection concerns
logical interaction, this restriction does not apply. The ClampConnector is always an assembly
connector, never a delegation connector.

Attributes

©2008-2010 The ATESST2 Consortium 67 (227)

EAST-ADL Domain Model Specification version 2.1

No additional attributes
Associations

No additional associations
Dependencies

e port : FunctionPort [2]
«instanceRef»

Constraints

[1] Can connect two FunctionFlowPorts of different direction.
[2] Can connect two ClientServerPorts of different kind.

[3] Can connect two FunctionFlowPorts with direction inout.
[4] Cannot connect ports in the same SystemModel.

Semantics

8.2.2 Environment (from Environment)

Generalizations

e Context (from Elements)
Description

The collection of the environment functional descriptions. This collection can be done across the

EAST-ADL abstraction levels.

An environment model can contain functionPrototypes given by either AnalysisFunction or
DesignFunction. The environment model does not have abstraction levels as in the system model

(e.g., analysisLevel, designLevel).

A functionPrototype of the environment model can have interactions with FAA FunctionalDevice

and an FDA HardwareFunction through the ClampConnector.
Attributes

No additional attributes
Associations

e environmentModel : FunctionPrototype [0..1]
e clampConnector : ClampConnector [*]
Constraints

No additional constraints

Semantics

©2008-2010 The ATESST2 Consortium 68 (227)

EAST-ADL Domain Model Specification version 2.1

Part Ill Behavioral Constructs

This part specifies the dynamic, behavioral constructs represented by metaclasses in EAST-ADL.

©2008-2010 The ATESST2 Consortium 69 (227)

EAST-ADL Domain Model Specification version 2.1

9 Behavior

9.1 Overview

This chapter describes the behavioral constructs of the EAST-ADL language. What we mean by
behavior here is either a function performing some computation on provided data (FlowPort
interaction) or the execution of a service called upon by another function (in a ClientServer
interaction).

The execution of the behavior assumes a strict run-to-completion, single buffer-overwrite
management of data. That is, each execution starts with the reading of data, which are not stored
locally and are constantly replaced by fresh data arriving on ports. The function then performs
some calculation and finally outputs some data on the output ports. The execution is non-
concurrent: only one behavior is active at any point in time and is not preemptable.

A FunctionBehavior in EAST-ADL is mainly a reference point to some description provided
elsewhere in a tool-dependent format, as depicted in the diagram for the behavior of a function
below. This enables the re-use of current behavior descriptions contained in the tools currently
used by automotive companies and suppliers. Given that, requirement and traceability information
can be provided for behavior in relation to the rest of the EAST-ADL model. A list of typical tool
formats is provided as an enumeration, FunctionBehaviorKind. Depending on the EAST-ADL
language implementation, such a behavior description can be provided in the model itself; for
instance, when using a UML-implementation of the EAST-ADL, UML behaviors can be used. Yet it
should be noted that the behavior described shall be compliant with the execution semantics of an
EAST-ADL function.

The rest of the behavioral constructs (see the following diagram of the behavior model
organization) relate to the organization of the triggering of behaviors attached to functions. At a
high level one can define activation Modes which may span across the whole architecture. Such
Modes can be regrouped in exclusive sets. Whenever a FunctionTrigger or a FunctionBehavior
refers to a Mode, this means its activation is dependent on the Mode being active or not. Thus
different execution configurations can be defined.

The triggering of behavior itself, defined by FunctionTrigger, can be either time or event-based
and be either type-wise or prototype-wise to allow further adjustments of functions in a particular
context. Events and timing constraints are defined in the Timing, Events, and TimingConstraints
sections.

©2008-2010 The ATESST2 Consortium 70 (227)

EAST-ADL Domain Model Specification version 2.1

EAE\ement
Eerey . watpPrototypes
watpTypes ..xenumer:atlor!:o FurclionModeling::
FurnchiomnMWodeling:: Trigger Policykind Funchiontrofofyos
FunclionT
wnelion Tyoe rum : :
+ isElementan: Boolean + EWENT: +functionPrototype o Frzoezhle Specifeation
+ TIME: tode Group
EAElement + precondition: String
+function FunctionTrigger
0.1 + triggerCondition: String
+ triggerPalicy: TriggerFolicykind 1
+port I/ \ +muode +mode 1.7
EAElement EAElement
+port Mode wenumerations
«atpProtoh.rp_e» FunctionBehaviorKind
= | FurcfiorModeling:: + condition: String
1 FunchionPorf e
tmod - + SIhiULINK:
mode + STATEMATE:
+ SDL:
+ ASCET:
o Context + SCADE:
FunctionBehawior + OTHER:
i + MARTE:
+unction + path: String + LML
+ representation: FunctionBehawiorkind ’
Figure 10. Diagram for the behavior of a function.
Corhexi Comtext
. oA .
Behawior +hehaviar FunictionBehawior
= + path: String
+ representation: FunctionBehawiorkind

. 0.1 0.1

Traceahle Specification

+mode&roup ™ e BT

+ precondition: String

1
* +functionTrigger +mode | 1.7 +mode i
EAElememt EAElememt
FunctionTrigger Miode
+ triggerCondition: String +mode e candition: String
+ triggerPalicy: TriggerPaolicykind

Figure 11. Diagram for behavior model organization.

9.2 Element Descriptions

9.21 Behavior (from Behavior)

Generalizations

e Context (from Elements)
Description

Behavior is a container of FunctionBehaviors. It enables grouping of the behaviors assigned to
functions in a particular context on which TraceableSpecifications can be applied. This can take

©2008-2010 The ATESST2 Consortium 71 (227)

EAST-ADL Domain Model Specification version 2.1

any appropriate form depending on the language implementation (for instance in a UML
implementation it could be a Package).

The collection of functional behaviors can be performed across the EAST-ADL abstraction levels.
Attributes

No additional attributes

Associations

e behavior : FunctionBehavior [*]
This is the set of FunctionBehaviors managed by the container.

o modeGroup : ModeGroup [*]
The contained mode groups.

e functionTrigger : FunctionTrigger [*]
Constraints

No additional constraints
Semantics

This element has the same role and semantics as Context, but for behavioral aspects.

9.2.2 FunctionBehavior (from Behavior)

Generalizations

e Context (from Elements)
Description

FunctionBehavior represents the behavior of a particular FunctionType - referred to by the
association to FunctionType. What is meant by behavior is a transfer function performing some
data computation (in case of FlowPort interaction) or an operation that can be called by another
function (in case of ClientServer interaction). The representation property indicates the kind of
representation used to describe the behavior (see FunctionBehaviorKind). The representation
itself (e.g., defined in an external model file) is identified by a URL String in the path property. If
the representation is provided in the same model file as the system itself, the path property is not
used. It is merely a placeholder with the purpose of containing information about and links to the
external behavioral model.

FunctionBehavior may refer to execution modes by the association to the element Mode. This is
not mandatory; however, when provided, the relation indicates the list of execution Modes in which
the FunctionBehavior can potentially be executed (see element Mode).

The triggering of a FunctionBehavior is unknown to the behavior. It is defined by FunctionTriggers
(see this element).

Note that the association between FunctionBehavior and FunctionType is specified as a one-way
navigable link from FunctionBehavior to FunctionType: what this means is that the EAST-ADL
language specification does not require that a FunctionType be aware of the FunctionBehavior it is
assigned to. Only the navigation from behavior to function is mandatory; the implementation of a
reverse link might however be provided depending on the tool support.

Although each FunctionBehavior can refer to at most one FunctionType, note that several
FunctionBehaviors can refer to the same FunctionType. In this case, when a FunctionType has
several behaviors, only one behavior shall be active at any given time instant, i.e., no concurrent
behaviors are allowed in EAST-ADL functions. For instance we cannot have one active behavior in
Simulink and one in Modelica. Both can be referenced in the same function, but at any given time,

©2008-2010 The ATESST2 Consortium 72 (227)

EAST-ADL Domain Model Specification version 2.1

only one is executable. Conditions such as modes, etc. must prevent two behaviors being
potentially active.

Note also that FunctionBehaviors are assigned to FunctionTypes and not to FunctionPrototypes.
This means that among a set of FunctionPrototypes, which share the same type, behaviors are
also shared. However when a FunctionBehavior refer to Modes, which are referred to by different
FunctionTriggers, different triggering conditions can be provided among a set of
FunctionPrototypes for the same set of behaviors - see FunctionTrigger.

In the case where the identified FunctionType is decomposed into parts, the behavior is a
specification for the composed behavior of the FunctionType.

Attributes

e path : String [1]
The path to the file or model entity containing the behavior.

e representation : FunctionBehaviorKind [1]
The type of representation used to describe the behavior.

Associations

¢ function : FunctionType [0..1]
The FunctionType to which the behavior is assigned.

e mode : Mode [*]
The execution Modes in which the behavior can be potentially executed.

Constraints
No additional constraints
Semantics

The representation provided to a FunctionBehavior follows the semantics of the behavioral
representation used (for instance SIMULINK, ASCET, etc.). However, in relation to the EAST-ADL
model, the FunctionBehavior has synchronous execution semantics:

1. Read inputs from input ports
2. Execute Behavior with fixed inputs (run to completion)
3. Provide outputs to output ports

The data transfer between the EAST-ADL ports and the FunctionBehavior is representation
specific and considered part of the execution of the FunctionBehavior.

9.2.3 FunctionBehaviorKind (from Behavior) «xenumeration»

Generalizations
None
Description

FunctionBehaviorKind is an enumeration which lists the various representations used to describe a
FunctionBehavior. It is used as a property of a FunctionBehavior. Several representations are
listed; however, one can always extend this list by using the literal OTHER.

Enumeration Literals

e ASCET
e MARTE
e OTHER

©2008-2010 The ATESST2 Consortium 73 (227)

EAST-ADL Domain Model Specification version 2.1

SCADE

SDL
SIMULINK
STATEMATE
UML
Associations

No additional associations
Constraints

No additional constraints
Semantics

Distinction between UML and MARTE comes from the slight differences in the behavioral
definitions (namely concerning data-flow oriented behaviors).

It should be noted that though one can use several languages to provide a representation of a
FunctionBehavior, the semantics shall remain compliant with the overall EAST-ADL execution
semantics.

9.24 FunctionTrigger (from Behavior)

Generalizations

¢ EAElement (from Elements)
Description

FunctionTrigger represents the triggering parameters necessary to define the execution of an
identified FunctionType or FunctionPrototype. When referring to a FunctionType, a
FunctionTrigger applies to all FunctionPrototypes of the given type. When referring to a
FunctionPrototype, the trigger is only valid for this particular FunctionPrototype.

Triggering is defined either as event-driven or time-driven - depending on the property
triggerPolicy. If set to TIME, the timing constraint is defined with an event constraint associated
with the Function’s or FunctionPrototype’s EventFunction. The function event refers to the
activation of the function. If set to EVENT, one or several ports of the Function triggers the
function, i.e. activates the function. In both cases, a triggerCondition is provided in the form of a
Boolean expression that must evaluate to true for the function to execute. The triggerCondition
syntax and grammar is unspecified.

In addition a FunctionTrigger may refer to a list of Modes in which the trigger will be considered as
potentially active. Because of FunctionBehaviors may also refer to Modes, it is thus possible to
arrange various function configurations for which different sets of triggers and behaviors are
active. And this, at various level of granularity, either with a type-wise scope (by referring to a
FunctionType) or specifically at prototype level (by referring to a FunctionPrototype).

Note that several FunctionTriggers may be assigned to the same Function (Type or Prototype), for
instance to define alternative trigger conditions and/or timing constraints.

Attributes

e triggerCondition : String [1]
A Boolean expression that must evaluate to true for this Function to execute. This value is
used both for time and event triggered elementary functions.

e triggerPolicy : TriggerPolicyKind [1]

©2008-2010 The ATESST2 Consortium 74 (227)

EAST-ADL Domain Model Specification version 2.1

Defines the triggering policy, either EVENT or TIME. The function event refers to the
activation of the function. If set to EVENT, one or several ports of the Function triggers the
function, i.e., activates the function.

Associations

e port : FunctionPort [*]
The FunctionPorts that are referred to in the FunctionTrigger if any.

e function : FunctionType [0..1]
The FunctionType that the FunctionTrigger refers to if any.

¢ functionPrototype : FunctionPrototype [0..1]
The FunctionPrototype that the FunctionTrigger refers to if any

e mode : Mode [*]
The execution Modes in which the FunctionTrigger is active.

Constraints
[1] The port association must not be empty when triggerPolicy is EVENT.
[2] The port association is empty when triggerPolicy is TIME.

[3] Function and functionPrototype are mutually exclusive associations. A FunctionTrigger either
identifies a FunctionType or a FunctionPrototype as its target function, but not both.

[4] Only FunctionFlowPort of FlowDirection=in shall be referred to in the association port and at
least one of them shall trigger the function

Semantics
Association Mode defines in which modes the trigger is active

It is possible to have multiple triggers on a function, e.g. a slow period complemented with an
event trigger allows fast response when needed but a minimal execution rate.

9.25 Mode (from Behavior)

Generalizations

o EAElement (from Elements)
Description

Modes are a way to introduce various configurations in the system to account for different states of
the system, or of a hardware entity, or an application. The use of modes can be used to filter
different views of the model.

Modes are characterized by a Boolean condition provided as a String which evaluates to true
when the Mode is active.

As far as behavior is concerned, Modes enable the logical organisation of a set of triggers and
behaviors over a set of functions. Modes are referred to by both FunctionTriggers and
FunctionBehaviors, thus capturing this organization (see FunctionTrigger and FunctionBehavior).

Modes can be further organized in mutually exclusive sets with ModeGroups (see that element).
Attributes

e condition : String [1]
A Boolean expression that characterizes the Mode, it evaluates to true when the Mode is
active. The syntax and grammar of this expression is unspecified.

Associations

©2008-2010 The ATESST2 Consortium 75 (227)

EAST-ADL Domain Model Specification version 2.1

No additional associations
Constraints

No additional constraints
Semantics

The Mode is active if and only if the condition is true.

9.2.6 ModeGroup (from Behavior)

Generalizations

e TraceableSpecification (from Elements)
Description

ModeGroups serve as containers of Modes. The Modes in a ModeGroup are mutually exclusive.
This means that only one Mode of a ModeGroup is active at any point in time. A precondition in
the form of a Boolean expression is assigned to the ModeGroup so that ModeGroups can be
switched on and off as a whole.

Attributes

e precondition : String [1]
A Boolean expression that evaluates to true when the ModeGroup is active.

Associations

e mode : Mode [1..*]
The modes in this group.

Constraints
No additional constraints

Semantics

9.2.7 TriggerPolicyKind (from Behavior) «<enumeration»

Generalizations

None

Description

TriggerPolicyKind represents an enumeration for triggering policies.

Enumeration Literals

e EVENT
Triggering by event.
e TIME

Triggering by time.
Associations
No additional associations

Constraints

©2008-2010 The ATESST2 Consortium 76 (227)

EAST-ADL Domain Model Specification version 2.1

No additional constraints

Semantics
The TriggerPolicyKind contains EVENT and TIME as possible triggering policies.

©2008-2010 The ATESST2 Consortium 77 (227)

EAST-ADL Domain Model Specification version 2.1

Part IV Variability

©2008-2010 The ATESST2 Consortium 78 (227)

EAST-ADL Domain Model Specification version 2.1

10 Variability

10.1 Overview

This package contains elements to express variability in the analysis architecture, design
architecture and implementation architecture. These abstraction levels in EAST-ADL will

sometimes be called the artifact levels.

watpStructureElements
FestureModeling:: Feature Model

Corexd

+zourceWehicleFeaturebodel
Comfiguration DecisionWode! o
“ehicleLewel Configuration Deci sionModel {-:; lrd ered}
+targetF eaturedodel
0.
+decisionhlodel i fordered)
+productFeatureblodel

+ compliancelevel: String

+publicFeaturabodel +configuredFeaturabdodel
Corrdext
Variability 0.1
0.1
‘T———————__ EAElement
+eonfigurableContainer Corfigurable Container
1 1
+variableElement

EAElement +configuration
WariableElement

| 0.1 4\ 1

Configuraion Decisioniode!
Festure Configuration

Figure 12. Diagram depicting the organization of variability modeling elements.

©2008-2010 The ATESST2 Consortium 79 (227)

EAST-ADL Domain Model Specification version 2.1

EAElement

+publicFeaturebdodel

el

CorfigurableCortainer 0.1

0.1

Cotext

watpStructureElements
Festurehodeling::
Fezturetodel

+ compliancelevel: String

+internalBinding

+eanfigurableElement
1

Iderntifizble:ldentifizble

+privateElement

+ categone: String [0..1]
+ shortMame: ldentifier
+ wuid: String

1 1.7

+optionalElement

4

0.1

Configuration Decisionfode!
Internal Binding

+uariationFroup
o

EAElememt
“ariationGroup

+
+

constraint: String
kind: “ariabilityDrependenoylind

+uariableElement

+requiredBindingTime

cenumerations
Festuremodeling::
“ariabilityDependencykind

e
+ needs:

+ optionalAltern ative:

+ mandatongflternative:
+ suggests:
+ impedes:
+ custom:

EAElememt
Priwate Cortent

0.1

Feszture Modeling:: BindingTi rme

EAE\ement

+actualBindingTime

+reusehdetalnfarmation

1

+ kind: BindingTimekind = systemDesignTime

1.7
Tordered]}
EAElement
“ariableElement -
0.1
-
0.1
-
1

Tracezhle Specification
Reuse beta Infor mation

a1

+ information: String
+ isReuzable:

Boolean = true

Figure 13. Diagram depicting the elements involved in artifact-level variation management.

FestureConfiguration

Container Configuration

1
+eanfiguredCaontainer

\{:}

— 1

+configuredFeaturefdodel

watpStructureElements
Festuremodeling::Festuretodel

Cormtext

]

+ compliancelewel: String

+sourcedfehicleFeatureModel
0.
fordered}

EAElement
ConfigurationDecisionMade!

+targetFeaturebdodel
0.
fordered}

S —

“ehicleLewel Confi gurationDeci sionkModel

0.

EAElememt
CorfigurableCortainer

Fomiulg Expression

SelectionCriterion

+configurableElement

1 +source

\D..1
+zelectionCritarion

Internal Binding

o.-

+rootEntry

EAElement

ConfigurafionDecisionMode! Enfry

+childEntry

+ izfctive: Boolean = true

Iderdifiable:\denfifizble

CorfigurationDecision

+ categoni: String [0..1]
+ shotMame: |dentifier
+ uuid: String

* forderad}
+larget + oriterion: String
+ effect: String
Flordered} +

isEquivalence: Boolean

Corfiguration Decision Folder

Figure 14. Diagram depicting the elements for configuration modeling.

©2008-2010 The ATESST2 Consortium

80 (227)

EAST-ADL Domain Model Specification version 2.1

10.2 Element Descriptions

10.2.1 ConfigurableContainer (from Variability)

Generalizations

o EAElement (from Elements)
Description

ConfigurableContainer is a marker class that marks an element identified by association
configurableElement as a configurable container of some variable content, i.e. VariableElements
and other, lower-level ConfigurableContainers. In order to describe the contained variability to the
outside world and to allow configuration of it, the ConfigurableContainer can have a public feature
model and an internal configuration decision model not visible from the outside, called "internal
binding".

In addition, the ConfigurableContainer can be used to extend the EAST-ADL variability approach
to other languages and standards by pointing from the ConfigurableContainer to the respective
(non EAST-ADL) element with association configurableElement. This provides the public feature
model and the ConfigurationDecisionModel to that non EAST-ADL element.

The variable content of a ConfigurableContainer is defined as all VariableElements and all other
ConfigurableContainers that are directly or indirectly contained in the Identifiable denoted by
association configurableElement. Instead of 'variable content' the term 'internal variability' may be
used.

Note that, according to this rule, the containment between a ConfigurableContainer and its
variable content, i.e. its contained VariableElements and lower-level ConfigurableContainers, is
not(!) directly defined between these meta-classes. Instead, the containment is defined by the
Identifiable pointed to by association configurableElement. For example, consider a FunctionType
"WiperSystem" containing two FunctionPrototypes "front" and "rear" both typed by FunctionType
"WiperMotor"; to make the wiper system configurable and the rear wiper motor optional, a
ConfigurableContainer is created that points to FunctionType "WiperSystem" (with association
configurableElement) and a VariableElement is created that points to FunctionPrototype "rear"
(with association optionalElement); the containment between the ConfigurableContainer and the
VariableElement is therefore not explicitly defined between these classes but instead only between
FunctionType "WiperSystem" and "FunctionPrototype" rear. In addition, the variability-related
visibility of "rear" can be changed with PrivateContent: by default the variability of "rear" will be
public and visible for direct configuration from the outside of its containing ConfigurableContainer,
i.e. "WiperSystem"; by defining a PrivateContent marker object pointing to the FunctionPrototype
"rear”, this can be changed to private and this variability will not be visible from the outside of
"WiperSystem".

Attributes
No additional attributes
Associations

e publicFeatureModel : FeatureModel [0..1]
The local feature model of the ConfigurableContainer.

PublicFeatureModel represents internal variability of a ConfigurableContainer. Thus it can
be seen as being part of the public interface of a ConfigurableContainer.

e internalBinding : InternalBinding [0..1]

©2008-2010 The ATESST2 Consortium 81 (227)

EAST-ADL Domain Model Specification version 2.1

The ConfigurationDecisionModel of the ConfigurableContainer.

e variationGroup : VariationGroup [0..*]
The variation groups that define certain dependencies and constraints between this
ConfigurableContainer's variable elements.

e configurableElement : Identifiable [1]
This association points to the actual element in the core model that is marked as a
configurable container of some variable content by this ConfigurableContainer. The
ConfigurableContainer in the variability extension can thus be seen as merely a marker
element (this marker mechanism follows the global guideline for relating the EAST-ADL
extensions to the core and is not specific to the variability extension).

Constraints

[1] Identifies one FunctionType or one HardwareComponentType.

[2] The publicFeatureModel is only allowed to contain Features (no VehicleFeatures).
Semantics

Marks the element identified by association configurableElement as a configurable container of
variable content (i.e. it contains VariableElements and/or other, lower-level
ConfigurableContainers) and optionally provides a public feature model and an internal
configuration decision model for it, thus providing configurability support for them.

10.2.2 ConfigurationDecision (from Variability)

Generalizations

¢ ConfigurationDecisionModelEntry (from Variability)
Description

ConfigurationDecision represents a single, atomized rule on how to configure the target feature
model(s) of the containing ConfigurationDecisionModel, depending on a given configuration of the
source feature model(s). Two examples are: "all North American (USA+Canada) cars except A-
Class have cruise control" (one ConfigurationDecision) or "all Canadian cars have adaptive cruise
control" (another ConfigurationDecision). All ConfigurationDecisions within a single
ConfigurationDecisionModel then specify how the target feature model(s) are to be configured
depending on the configuration of the source feature model(s).

Example: Lets assume we have two FeatureModels: FM1 and FM2. FM1 has possible end-
customer decisions like USA, Canada, EU, Japan and A-Class, C-Class, etc. FM2 has another
possible end-customer decision such as CruiseControl, AdaptiveCruiseControl, RearWiper,
RainSensor. End-customer decisions in FM2 describe possible technical features of the delivered
products. By way of a set of ConfigurationDecisions it is now possible to define the configuration of
FM2 (i.e. if there is a RainSensor, etc.) in dependency of a configuration of FM1. In other words,
with a ConfigurationDecision we can express something like: "If USA is selected in FM1 AND A-
Class is not selected in FM1, then CruiseControl will be selected in FM2".

The two most important constituents of a ConfigurationDecision are its ‘criterion' and 'effect’. The
effect is a list of things to select and deselect in the target(!) configuration(s), whereas the criterion
formulates a condition on the source(!) configuration(s) under which this ConfigurationDecision's
effect will actually be applied to the target configuration(s). In the first example above, the criterion
would be "USA & not A-Class" and the effect would be "CruiseControl[+]".

Attributes

e criterion : String [1]

©2008-2010 The ATESST2 Consortium 82 (227)

EAST-ADL Domain Model Specification version 2.1

The criterion is a logical expression on the source configuration(s) and states under which
condition the 'effect' will be applied to the target configuration(s). This attribute adheres to
the syntax and semantics of the VSL language.

o effect: String [1]
States which Features are included/selected by the ConfigurationDecision in case the
logical expression in ‘criterion' evaluates to true. Each of these Features needs to be
defined in one of the target feature models of the containing ConfigurationDecisionModel.
This attribute adheres to the syntax and semantics of the VSL language.

The Features are documented as a comma-separated list of strings. Each string has the
form <Name of FeatureModel>#<Name of Feature>. If a string is unique in all the source
and target FeatureModels of the ConfigurationDecisionModel containing this
ConfigurationDecision, then the first part (the FeatureModel name and the #-separator) can
be omitted. If a Feature name is not unique in a single FeatureModel, then a dot-notation
may be used to prepend the name(s) of predecessors in order to identify the Feature.

Configuring a cloned feature does not mean selecting or deselecting it but instead
instances of the cloned feature are created. Each such instance is provided with a name,
which thus becomes a part of the configuration (not the feature model). If several instances
are created for a single cloned feature, then the name is used to identify these instances.
For example, consider a cloned feature Wiper with cardinality [0..*]. A first configuration
decision might create an instance called "front" and a second might create another named
"rear"; a third configuration decision creating or otherwise referring to an instance called
"front" will denote the same instance as the first configuration decision. The name space
for these instance names is a particular feature configuration.

As an example for the syntax and semantics of the effect attribute, assume there are two
FeatureModels called FMa and FMb and they both contain the Features Wiper and
ClimateControl. In FMa (but not in FMb !), Wiper and ClimateControl are both refined into
the child features Simple and Advanced. In addition, the wiper in FMa has a RainSensor.
To denote the RainSensor in FMa you can state:

FMa#Wiper.RainSensor
or simply write:
RainSensor

This is sufficient here, because the name of Feature RainSensor is unique within FMa and
within all FeatureModels referenced by the ConfigurationDecisionModel. In contrast, to
denote the advanced version of the climate control in FMa you can specify:

FMa#ClimateControl.Advanced
or simply:
ClimateControl.Advanced

but merely stating "Advanced" would not suffice because there are two features with that
name. Finally, to denote the wiper of feature model FMb you write:

FMb#Wiper

e isEquivalence : Boolean [1]
Setting the attribute isEquivalence to true means that the features referred to in the
ConfigurationDecision's effect are exclusively configured by this ConfigurationDecision (i.e.
no other ConfigurationDecision in the same ConfigurationDecisionModel may refer to these
features). This means that this ConfigurationDecision is the ONLY way in which these
features can be selected and therefore the wusual logical implication that a

©2008-2010 The ATESST2 Consortium 83 (227)

EAST-ADL Domain Model Specification version 2.1

ConfigurationDecision represents is turned into a logical equivalence, hence the name: the
effect is applied to the target configurations if and only(!) if the specified criterion holds.

With setting this attribute to true, the modeler can state that the target-side features in this
ConfigurationDecision's effect are exclusively configured by this ConfigurationDecision, i.e.
no other ConfigurationDecision may influence these target-side features.

Associations

e selectionCriterion : SelectionCriterion [0..1]
The mixed string expression.

o target : Identifiable [*] {ordered}
The target elements used in the mixed string expression.

Constraints

No additional constraints

Semantics

The ConfigurationDecision excludes or includes Features based on a given criterion.

The elements of the criterion and effect attributes may be identified through the target and the
source in the selectionCriterion. The criterion and effect attributes can contain a VSL expression
with qualified names of the identified elements.

10.2.3 ConfigurationDecisionFolder (from Variability)

Generalizations

¢ ConfigurationDecisionModelEntry (from Variability)
Description

ConfigurationDecisionFolder represents a grouping for ConfigurationDecisions.
Attributes

No additional attributes

Associations

¢ childEntry : ConfigurationDecisionModelEntry [0..*]
The child entries of the ConfigurationDecisionFolder.

Constraints
No additional constraints
Semantics

ConfigurationDecisionFolder is a grouping entity for ConfigurationDecisions.

10.2.4 ConfigurationDecisionModel (from Variability) {abstract}

Generalizations

e EAElement (from Elements)
Description

A ConfigurationDecisionModel defines how to configure m so-called target feature models,
depending on a given configuration of n so-called source feature models, thus establishing a
configuration-related link from the n source feature models to the m target feature models (also

©2008-2010 The ATESST2 Consortium 84 (227)

EAST-ADL Domain Model Specification version 2.1

called configuration link). With the information captured in a ConfigurationDecisionModel it is then
possible to transform a given set of source configurations (one for every source feature model)
into corresponding target configurations (one for every target feature model).

For example, a ConfigurationDecisionModel can capture information such as "if feature 'S-Class' is
selected in the source feature model, then select feature 'RainSensor' in the target feature model"
or "if feature 'USA' is selected in the source feature model, then select feature 'CupHolder' in the
target feature model".

Note that in principle all ConfigurationDecisionModels have source / target feature models.
However, they are only defined explicitly for those wused on vehicle Ilevel; for
ConfigurationDecisionModels used as an internal binding on FunctionTypes, the source and target
feature models are defined implicitly (cf. metaclass InternalBinding). In addition, in the special
case of FeatureConfiguration there is by definition no source and only a single target feature
model, which is defined explicitly (cf. metaclass FeatureConfiguration).

The configuration information captured in a ConfigurationDecisionModel is represented by
ConfigurationDecisions, each of which captures a single, atomized rule on how to configure the
target feature model(s) depending on a given configuration of the source feature model(s).

Attributes
No additional attributes
Associations

e rootEntry : ConfigurationDecisionModelEntry [0..*]
The root entries of the ConfigurationDecisionModel.

Constraints
No additional constraints

Semantics

10.2.5 ConfigurationDecisionModelEntry (from Variability) {abstract}

Generalizations

o EAElement (from Elements)
Description

ConfigurationDecisionModelEntry is the abstract base class for all content of a
ConfigurationDecisionModel.

Attributes

e isActive : Boolean = true [1]
If active==TRUE then the ConfigurationDecisionModelEntry is actually applied when
transforming source into target configurations; otherwise it will be ignored. With this
attribute, configuration decisions can (temporarily) be disabled without having to delete
them from the model.

If this is set to FALSE for a ConfigurationDecisionFolder, then also the entire contents of
this folder are deactivated, no matter to what value their isActive-attribute is set.

Associations
No additional associations

Constraints

©2008-2010 The ATESST2 Consortium 85 (227)

EAST-ADL Domain Model Specification version 2.1

No additional constraints

Semantics

10.2.6 ContainerConfiguration (from Variability)

Generalizations

¢ ConfigurationDecisionModel (from Variability)
Description

ContainerConfiguration defines an actual configuration of the variable content of a
ConfigurableContainer, in particular the selection or deselection of contained VariableElements
and the configuration of the public feature models of contained other ConfigurableContainers. For
more details on the variable content of a ConfigurableContainer refer to the documentation of
meta-class ConfigurableContainer.

The ContainerConfiguration inherits from ConfigurationDecisionModel even though it does not
define a configuration link between feature models, similar to FeatureConfiguration. For more
information on this, refer to the documentation of meta-class FeatureConfiguration.

The source and target feature models of a ContainerConfiguration are defined implicitly: it always
has zero source feature models (as explained for FeatureConfiguration) and its target feature
models can be deduced from the ConfigurableContainer being configured by applying the same
rules as defined for InternalBinding.

Attributes
No additional attributes
Associations

¢ configuredContainer : ConfigurableContainer [1]
The ConfiguredContainer being configured by this ContainerConfiguration.

Constraints
No additional constraints
Semantics

The ContainerConfiguration specifies a concrete configuration of the variable content of a
ConfigurableContainer.

10.2.7 FeatureConfiguration (from Variability)

Generalizations

e ConfigurationDecisionModel (from Variability)
Description

FeatureConfiguration defines an actual configuration of a FeatureModel, in particular the selection
or deselection of optional features, values for selected parameterized features, and instance
creations for cloned features.

Note that configurations of feature models are realized as a specialization of metaclass
ConfigurationDecisionModel. This is possible because a ConfigurationDecisionModel also
captures configuration, i.e., of its target feature model(s); while in the standard case of
ConfigurationDecisionModel this target-side configuration depends on a given configuration of

©2008-2010 The ATESST2 Consortium 86 (227)

EAST-ADL Domain Model Specification version 2.1

source feature model(s), we here simply define a "constant" target-side configuration without
considering any source configurations. Therefore, the FeatureConfiguration meta-class has
additional constraints compared to the super-class ConfigurationDecisionModel: the
FeatureConfiguration has no source FeatureModel and only a single target FeatureModel, which
serves as the FeatureModel being configured, explicitly defined through association
‘configuredFeatureModel'. And since there is no source feature model to which the criterion can
refer, all ConfigurationDecisions in a FeatureConfiguration must have "true" as their criterion.

Attributes
No additional attributes
Associations

¢ configuredFeatureModel : FeatureModel [1]
Constraints

No additional constraints
Semantics

The FeatureConfiguration specifies a concrete configuration of a feature model, in particular which
Features of this FeatureModel are selected or deselected.

10.2.8 InternalBinding (from Variability)

Generalizations

¢ ConfigurationDecisionModel (from Variability)
Description

The InternalBinding is the private, internal ConfigurationDecisionModel of the
ConfigurableContainer. It defines how the internal, lower-level variability of the
ConfigurableContainer is bound, i.e. configured, depending on a given configuration of the
ConfigurableContainer's public feature model. This way, the binding of this internal variability is
encapsulated and hidden behind the public feature model, which serves as a variability-related
interface.

Note that for this use case, the source and target feature models need not be defined explicitly
because they are deduced implicitly: the ConfigurableContainer's public feature model serves as
the (single) target feature model, and the source feature models are deduced from the
ConfigurableContainer's internal variability (esp. other, lower-level ConfigurableContainers which
are contained).

For a definition of the precise meaning of ‘internal variability' in the above sense (also called
variable content) refer to the documentation of meta-class ConfigurableContainer.

Attributes

No additional attributes
Associations

No additional associations
Constraints

No additional constraints

Semantics

©2008-2010 The ATESST2 Consortium 87 (227)

EAST-ADL Domain Model Specification version 2.1

10.2.9 PrivateContent (from Variability)

Generalizations

o EAElement (from Elements)
Description

PrivateContent is a marker class that marks the artifact element denoted by association
privateElement as private, i.e., it will not be presented to the outside of the containing
ConfigurableContainer.

Refer to the documentation of meta-class ConfigurableContainer for a detailed explanation of how
ConfigurableContainer and PrivateContent play together.

Attributes
No additional attributes
Associations

e privateElement : Identifiable [1]
This association points to the actual element in the core model that is marked private by
this PrivateContent object. Instances of the PrivateContent meta-class in the variability
extension can thus be seen as merely a marker object (this marker mechanism follows the
global guideline for relating the EAST-ADL extensions to the core and is not specific to the
variability extension).

Constraints

[1] Identifies either one FunctionPrototype or one FunctionPort or one FunctionConnector or one
HardwareComponentPrototype or one HardwarePort or one ClampConnector.

Semantics

Marks the element identified by association privateElement as private. Otherwise the elements
visibility defaults to public.

10.2.10 ReuseMetalnformation (from Variability)

Generalizations

e TraceableSpecification (from Elements)
Description

ReuseMetalnformation represents the description information needed in the context of reuse. For
example a specific entity is only a short-time solution that is not intended to be reused. Also a
specific entity can only be reused for specific model ranges (that are not reflected in the product
model). This kind of information can be stored in this information.

Attributes

e information : String [1]
The reuse information is stored in this attribute.

e isReusable : Boolean = true [1]
This Boolean attributes just says whether the owning VariableElement itself can essentially
be reused or not. Specific information or constraints on reuse are in the information
attribute.

Associations

No additional associations

©2008-2010 The ATESST2 Consortium 88 (227)

EAST-ADL Domain Model Specification version 2.1

Constraints
No additional constraints
Semantics

The ReuseMetalnformation represents information that explains if and how the respective entity
can be reused.

10.2.11 SelectionCriterion (from Variability)

Generalizations

o FormulaExpression (from Elements)
Description

A mixed string description, identifying the source elements.
Attributes

No additional attributes

Associations

e source : ldentifiable [*] {ordered}
The elements used in the mixed string expression.

Constraints
No additional constraints

Semantics

10.2.12 Variability (from Variability)

Generalizations

e Context (from Elements)
Description

The collection of variability descriptions, related feature models, and decision models. This
collection can be done across the EAST-ADL abstraction levels.

Attributes
No additional attributes
Associations

e productFeatureModel : FeatureModel [*]
This association points to zero or more feature models intended to be used on the vehicle
level in addition to the core technical feature model (cf. association technicalFeatureModel
in meta-class VehicleLevel).

Usually there will be the core technical feature model and one or more so-called "product
feature models" on vehicle level, which provide an orthogonal view on the core technical
feature model tailored to a particular purpose, for example an end-customer feature model.
However, there may be more and other use cases for feature models on vehicle level.
More detailed treatment of this is beyond the scope of the language specification and can
be found in the accompanying usage and methodology documentations.

©2008-2010 The ATESST2 Consortium 89 (227)

EAST-ADL Domain Model Specification version 2.1

decisionModel : VehicleLevelConfigurationDecisionModel [*]
configuration : FeatureConfiguration [*]

variableElement : VariableElement [*]
configurableContainer : ConfigurableContainer [*]
Constraints

No additional constraints

Semantics

10.2.13 VariableElement (from Variability)

Generalizations

o EAElement (from Elements)
Description

VariableElement is a marker class that marks an artifact element denoted by association
optionalElement as being optional, i.e. it will not be present in all configurations of the complete
system. A typical example is an optional FunctionPrototype.

In addition, the VariableElement can be used to extend the EAST-ADL variability approach to
other languages and standards by pointing from the VariableElement to the respective (non EAST-
ADL) element with association optionalElement, thus marking the non EAST-ADL element as
optional and providing configuration support within its containing ConfigurableContainer.

Refer to the documentation of meta-class ConfigurableContainer for a detailed explanation of how
ConfigurableContainer and VariableElement play together.

Attributes
No additional attributes
Associations

e actualBindingTime : BindingTime [1]
Actual binding time attribute. Due to technical conditions it may occur that the actually
realized binding time of the feature/variation point differs from the originally intended
binding time. In this case one has to provide information about the actual binding time. In
the rationales it must be described what the reasons are for a (different) actual binding
time.

e requiredBindingTime : BindingTime [0..1]
Required binding time attribute. Each feature/variation point must have a required binding
time attribute. The required binding time describes the binding time that the feature is
intended to have.

e reuseMetalnformation : ReuseMetalnformation [0..1]
Reuse-relevant meta-information for the element.

e optionalElement : Identifiable [1..*]
This association points to the actual element in the core model that is marked optional by
this VariableElement. The VariableElement in the variability extension can thus be seen as
merely a marker element (this marker mechanism follows the global guideline for relating
the EAST-ADL extensions to the core and is not specific to the variability extension).

Constraints

©2008-2010 The ATESST2 Consortium 90 (227)

EAST-ADL Domain Model Specification version 2.1

[1] Identifies either one FunctionPrototype or one FunctionPort or one FunctionConnector or one
HardwareComponentPrototype or one HardwarePort or one ClampConnector.

Semantics

Marks the element identified by association optionalElement as optional.

10.2.14 VariationGroup (from Variability)

Generalizations

o EAElement (from Elements)
Description

A VariationGroup defines a relation between an arbitrary number of VariableElements. It is
primarily intended for defining how these VariableElements may be combined (e.g. one requires
the other, alternative, etc.).

Attributes

e constraint : String [1]
Only defined iff kind=="custom". An OCL constraint specifying how the VariableElements in
the variation group can be combined.

e Kkind : VariabilityDependencyKind [1]
The kind of the variation group (see enumeration VariationGroupKind).

Associations

e variableElement : VariableElement [1..*] {ordered}
Associated variable elements.

Constraints
No additional constraints
Semantics

Defines a dependency or constraint between the variable elements denoted by association
variableElement. The actual constraint is specified by attribute kind.

10.2.15 VehicleLevelConfigurationDecisionModel (from Variability)

Generalizations

e ConfigurationDecisionModel (from Variability)
Description

This class represents a ConfigurationDecisionModel on vehicle level with explicitly defined source
and target feature models. The source feature models must be on vehicle level, but the target
feature models may be located on artifact level, e.g. the public feature model of the top-level
FunctionType in the FDA. This way, a VehicleLevelConfigurationDecisionModel may be used to
bridge the gap from vehicle level variability management to that on artifact level.

Source feature models may be either the core technical feature model (as defined by association
technicalFeatureModel of meta-class VehicleLevel) or one of the optional product feature models
(as defined by association productFeatureModel of meta-class Variability in the variability
extension).

Attributes

©2008-2010 The ATESST2 Consortium 91 (227)

EAST-ADL Domain Model Specification version 2.1

No additional attributes
Associations

e sourceVehicleFeatureModel : FeatureModel [0..*] {ordered}
o targetFeatureModel : FeatureModel [0..*] {ordered}
Constraints

[1] The sourceVehicleFeatureModels shall only contain VehicleFeatures.
[2] The sourceVehicleFeatureModels shall be different from the targetFeatureModels

Semantics

©2008-2010 The ATESST2 Consortium 92 (227)

EAST-ADL Domain Model Specification version 2.1

Part V Requirements

©2008-2010 The ATESST2 Consortium 93 (227)

EAST-ADL Domain Model Specification version 2.1

11 Requirements

11.1 Overview

A requirement expresses a condition or capability that must be met or possessed by a system or
system component to satisfy a contract, standard, specification or other formally imposed
properties.

Requirements can be introduced in different phases of the development process for different
reasons. They could be introduced by marketing people, control engineers, system engineers,
software engineers, Driver/OS developers, basic software developers or hardware engineers. This
leads to the fact that requirements have many sources, and requirements are of many types (at
different levels of detail) and have several relations between them. Under these conditions the
number of requirements can become quickly unmanageable if appropriate management does not
exist. Note that, requirements can change during the project development and the changes should
be taken into account. Requirements are organized hierarchically through several kinds of
refinement relations.

EAST-ADL has constructs that deal with these problems. Some of these constructs deals with
general issues in software development and have been already addressed in the past by general
processes. As done for the structure part of EAST-ADL, the requirements part will be compliant
with UML2. The EAST-ADL adapts existing concepts whenever possible and develops new ones
otherwise.

Elements inspired by SysML are Requirement, Satisfy, Refine, DeriveRequirement, and Verify.

Fraceable Soecifoation

. . Tracezble Specifeation
ReguiremenfsgecificafianObject +eontainedReqSpecObject 1.

Requiremerts Cortainer

a..1 +referencingContainer

+childContainer ® +parentContainer
fordered} 0.1
cenumerations

OualityRequirementKind

Requiremerts Relstedinfor mation Require mert

- : anum
+ formalism: String [0..1] configurability:
+ url: String [2..1] ETJONOMmy

+
+
+ humanhachinelnterdface:
+ =zafety:
+ security
+mode . + timing:
+ othern
+
+
+
+
+
+

EAElememt awailability:
Behawior::kode reliability:
confidentiality:
integrity:
maintainability:
performance:

QualityRequirement

+ qualityRequirementType: QualityRequiremeantkind
+ condition: String

Figure 15. Diagram for Requirements overview.

©2008-2010 The ATESST2 Consortium 94 (227)

EAST-ADL Domain Model Specification version 2.1

Tracezble Specifcation

Requirements RelationGroup

ReguiremnentsRelabiorshio

DeriveRequiremeant

+refinedRequirement

ReguienentsRelationshio
Refine

+derivedFramy | 1.7 +derivedy| 1.7
+relation 1.7 Reguirement Speciffcation Odyect
Requimmentzfelationshio +z0urce Requiremant
RequirementsLink 1 + farmalism: String [0..1]
———— T+ wrl String [0.1]
+ isBidiractional: Boolean +target
1.7

B = ‘[+zatisfiedRequirement

ReguirenertsRelationship
Satisfy

«instanceRefs
'

H
+refinedBy \:JH.."

«instanc:eRef:o

;
+satisfiedBy ‘u‘r 1.

Reguiesmentsfelationshio
WerificationValidation::
“erify

+verifiedRequirement
1.7

Traceahle Speciffcation

UseCases:UselCase

+satisfiedUseCase

+verifie dByC ase
1.7

Userdbld huteahle Element
Elements::EAElenrent

Iderhifizble lderiifable

4t>+

categony: String [0..1]

+ name: String [0..1]

+ shotName:
+ uuid: String

Identifier

= +verifiedByProcedure

Traceahle Specifieation

Werificationvalidation:
MProcedure

<]

+abstractyWFrocedura 0.1

<]

+concretel WP rocedure 0.7

+wyFrocedure

Figure 16. Diagram for Relationships including Requirement.

+childContainer ™

+parentContainer0..1 ‘ {ordered}

Traceghle Specifeation

Requirements Cortainer

+requirementContainer

+referencingContainer 1.7

+containedReqSpecObject 0.1

+requirement

Treceahle Specification
ReguiremeniipecifcafionObject

Reguirementshodel

® forderad}

Fraceable Speciffcation

+relationship

Treceable Specification 2
“erificationvalidation:
Wy Case
+uvSubject
+concreteVCase 0.7
1.7
+abstractuCaze 0.1
ot 0.1 +operationalSituation

Operstion=l Situstion

+uzelase

Traceahle Specification
UszeCases:UseCasze

Relatiorshio
Reguinenmenisielafiarshio

ReguirementsLink

Requirerment [FSource
+ farmalism: String [D..1] 1.7
+ url: String [2..1] Ctarget
1.7

Figure 17. Diagram for Requirements organization.

+ izBidirectional: Boolzan

11.2

Element Descriptions

1121

DeriveRequirement (from Requirements)

Generalizations

©2008-2010 The ATESST2 Consortium

¢ RequirementsRelationship (from Requirements)
Description

95 (227)

EAST-ADL Domain Model Specification version 2.1

The DeriveRequirement is a relationship metaclass, which signifies a dependency relationship
between two sets of Requirements, showing the relationship when a set of derived client
Requirement (client requirement) is derived from a set of Requirements (supplier requirement).

Attributes
No additional attributes
Associations

o derivedFrom : Requirement [1..*]
The set of requirements that the client requirement are derived from.

o derived : Requirement [1..*]
The set of requirements derived from the supplier requirement.

Constraints
No additional constraints
Semantics

The DeriveRequirement metaclass signifies a derived/derived by relationship between
Requirements, where the modification of the supplier Requirement may impact the derived client
Requirement.

11.2.2 OperationalSituation (from Requirements)

Generalizations

e TraceableSpecification (from Elements)
Description

An operational situation is a state, condition or scenario in the environment that may influence the
vehicle. The Operational Situation may be further detailed by a functional definition in the
EnvironmentModel.

Attributes

No additional attributes
Associations

No additional associations
Constraints

No additional constraints
Semantics

OperationalSituation represent a state, condition or scenario that is external to the vehicle.

11.2.3 QualityRequirement (from Requirements)

Generalizations

¢ Requirement (from Requirements)
Description

QualityRequirements or non-functional requirements are used to introduce externally visible
properties of the system considered as a whole. They specify criteria that can be used to judge the

©2008-2010 The ATESST2 Consortium 96 (227)

EAST-ADL Domain Model Specification version 2.1

operation of a system. As opposed to a functional requirement specifying what a system is
supposed to do, the non-functional requirements define how a system is supposed to be.

The attribute qualityRequirementType allows a more specific classification.
Attributes

e qualityRequirementType : QualityRequirementKind [1]
Associations

No additional associations
Constraints

No additional constraints
Semantics

QualityRequirement element represent a requirement which is non-functional.

11.2.4 QualityRequirementKind (from Requirements) «enumeration»

Generalizations
None
Description

QualityRequirementKind represents an enumeration with enumeration literals describing various
types of quality requirements.

Enumeration Literals

e availability
The requirement is related to availability, the readiness for correct service.

¢ confidentiality
The requirement is related to confidentiality.

¢ configurability
The requirement is related to the ability to configure the functionality.

e ergonomy
The requirement is related to the ergonomy of the functionality.

e humanMachinelnterface

The requirement is related to the human-machine interface.
e integrity

The requirement is related to integrity, absence of improper system alteration.
e maintainability

The requirement is related to maintainability, the ability to undergo modifications and
repairs.

e other
The requirement is a quality requirement with a general classification.

e performance
The requirement is related to performance in general.

o reliability
The requirement is related to reliability, the continuity of correct service.

©2008-2010 The ATESST2 Consortium 97 (227)

EAST-ADL Domain Model Specification version 2.1

o safety
The requirement is related to safety, the absence of catastrophic consequences on the
user(s) and the environment.

e security
The requirement is related to security.

e timing
The requirement is related to timing.

Associations

No additional associations
Constraints

No additional constraints

Semantics

11.2.5 Refine (from Requirements)

Generalizations

¢ RequirementsRelationship (from Requirements)
Description

The Refine is a relationship metaclass, which signifies a dependency relationship between
Requirements and EAElements, showing the relationship when a client EAElement refines the
supplier Requirement.

Attributes
No additional attributes
Associations

o refinedRequirement : Requirement [1..*]
List of refined Requirements.

Dependencies

o refinedBy : EAElement [1..%]
«instanceRef»

Constraints
[1] The property refinedBy must not have the types Requirement or RequirementContainer.
Semantics

The Refine metaclass signifies a refined requirement/refined by relationship between a
Requirement and an EAElement, where the maodification of the supplier Requirement may impact
the refining client EAElement. The Refine metaclass implies the semantics that the refining client
EAElement is not complete, without the supplier Requirement.

11.2.6 Requirement (from Requirements)

Generalizations

e RequirementSpecificationObject (from Requirements)

©2008-2010 The ATESST2 Consortium 98 (227)

EAST-ADL Domain Model Specification version 2.1

Description

The Requirement represents a capability or condition that must (or should) be satisfied. A
Requirement can also specify an informal constraint, e.g. "The development of the component X
must be according to the standard Y", or "The realization of this function as a software component
must adhere to the scope and external interface as specified by this function”. It will be used to
unite the common properties of specific requirement types. A Requirement may either be directly
associated with a Context (by inheriting from TraceableSpecification) or it may be included in a
RequirementContainer, which represents a larger unit or module of specification information.

The traceability between Requirement entities and other specification or design entities will be
ensured by the relationship dependencies described in the Infrastructure part of this specification.

Attributes

e formalism : String [0..1]
Specifies the language used for the requirement statement.

e url: String [0..1]
Reference to possible external file containing the requirement statement.

Associations

e mode : Mode [*]
The mode where this requirement is valid.

Constraints
No additional constraints
Semantics

The Requirement metaclass applies to the EAElement that is associated to the Requirement
through the Satisfy relation.

11.2.7 RequirementsContainer (from Requirements)

Generalizations

e TraceableSpecification (from Elements)
Description

RequirementContainer represents a larger unit or module of specification information. It is used to
bundle several Requirements which are semantically related to each other. Also, a
RequirementContainer structure will be used for structuring requirement specification objects
(Requirements, Rationals etc.). Thus, to preserve the ordering of requirement specification
objects, the ordering of child containers is very important here.

Furthermore, the RequirementContainer allows the introduction of additional user attribute
definitions by way of UserAttributeElementTypes or UserAttributeTemplates, which are valid only
locally inside this RequirementContainer. These are additional in that they are used in addition to
the user attribute definitions which are provided globally for the entire EAST-ADL repository.

An EAST-ADL system model may contain a forest of RequirementContainers (see parent child
relationship). Only non-root RequirementContainers that have a parentContainer are allowed to
reference a RequirementSpecificationObject.

The RequirementContainer with its parent child containment relationship and the reference to
RequirementSpecificationObject is the basic element for structuring requirement information into a
forest structure.

Attributes

©2008-2010 The ATESST2 Consortium 99 (227)

EAST-ADL Domain Model Specification version 2.1

No additional attributes
Associations

¢ containedReqSpecObject : RequirementSpecificationObject [0..1]
E.g. a pure requirement or a rational etc.

This relationship couples requirement specification object and requirement container. Such
coupling is only allowed when the requirement container is not a root requirement
container.

¢ childContainer : RequirementsContainer [*] {ordered}
Sub containers of a requirement container. Sub containers may have references (each
time max. one) to requirement specification objects. To preserve the original ordering of
requirement specification objects, the ordering of sub containers is very important here.

e parentContainer : RequirementsContainer [0..1]
The Parent container of a container. If there is no parent, the container is a root container
and thus cannot have a reference to a requirement specification object.

Constraints

[1] Only non-root RequirementContainers (parentContainer must be set) which have a
parentContainer are allowed to reference a RequirementSpecificationObject.

Semantics

11.2.8 RequirementsLink (from Requirements)

Generalizations

¢ RequirementsRelationship (from Requirements)
Description

RequirementsLink represents a relation between two or more Requirements. Source and target
Requirements of the relation are distinguished, which means that the relation is directed (from
source to target). If such a distinction does not make sense, then use a RequirementsGroup
instead.

The standard case will be a relation with one source and one target Requirement. However, it is
possible to have several source and/or several target Requirements so that general relations can
be expressed with instances of this metaclass.

The semantic of a concrete Requirement relation can be provided by the modeler. In particular,
three ways are conceivable:

(1) The user attributes of the relation can be used to specify its meaning, for example with a user
attribute called "relationType" which is set to values such as "needs" or "excludes".

(2) The UserAttributeElementType can be used. Certain types will be used for certain relation
semantics.

(3) RequirementsRelationGroups can be used, i.e. all relations with an "excludes" meaning are put
in one relation group and all with a "needs" meaning are put in another.

Attributes

e isBidirectional : Boolean [1]

©2008-2010 The ATESST2 Consortium 100 (227)

EAST-ADL Domain Model Specification version 2.1

When set to true, the semantic relation represented by this instance of
RequirementRelation does not only apply to the direction from source to target (as always)
but also in the opposite direction.

Note that this means that the relation becomes directed in both directions but NOT
undirected. To express an undirected association use a RequirementGroup.

Associations

e target: Requirement [1..*]
The requirement(s) at which this relation ends.

e source : Requirement [1..*]
The requirement(s) at which this relation starts.

Constraints
No additional constraints

Semantics

11.2.9 RequirementsModel (from Requirements)

Generalizations

e Context (from Elements)
Description

The collection of requirements, their relationships, and use cases. This collection can be done
across the EAST-ADL abstraction levels.

Attributes
No additional attributes
Associations

relationship : RequirementsRelationship [*]
requirementContainer : RequirementsContainer [*]
requirement : RequirementSpecificationObject [*]
operationalSituation : OperationalSituation [*]
useCase : UseCase [*]

Constraints

No additional constraints

Semantics

11.2.10 RequirementSpecificationObject (from Requirements) {abstract}

Generalizations

e TraceableSpecification (from Elements)
Description

In general, it is a standard practice (e.g. using IBM Rational DOORS) to define requirements and
also rationales, explanations and other requirement related information as direct successors or
predecessors of an appropriate requirement. Thus, requirements and requirement related

©2008-2010 The ATESST2 Consortium 101 (227)

EAST-ADL Domain Model Specification version 2.1

information are generalized to RequirementSpecificationObject which in turn can be referenced by
the structuring container structure (RequirementContainer).

Attributes
No additional attributes
Associations

o referencingContainer : RequirementsContainer [1..*]
Several containers may have a reference to one requirement specification object. But at
least one container shall stay in reference with a requirement specification object. The
RequirementContainer with its parent child containment relationship and the reference to
RequirementSpecificationObject is the basis element for structuring requirement
information into a forest structure.

Constraints
No additional constraints

Semantics

11.2.11 RequirementsRelatedInformation (from Requirements)

Generalizations

¢ RequirementSpecificationObject (from Requirements)
Description

This is a placeholder for all objects which are not Requirements (such as Rational, Explanations,
Related Material etc.). For example, an element of type RequirementsRelatedInformation, which is
a rational of an element of type Requirement, will directly succeed this requirement as a sibling
element (see structuring of requirement elements via RequirementContainer).

Attributes

No additional attributes
Associations

No additional associations
Constraints

No additional constraints
Semantics

This metaclass can be used to represent information. This is not a requirement, but is related to
requirements, and is often provided together with a set of requirements in a requirements
specification.

11.2.12 RequirementsRelationGroup (from Requirements)

Generalizations

e TraceableSpecification (from Elements)
Description

RequirementsRelationGroup represents a group of relations between Requirements.

©2008-2010 The ATESST2 Consortium 102 (227)

EAST-ADL Domain Model Specification version 2.1

Attributes
No additional attributes
Associations

¢ relation : RequirementsLink [1..*]
The relations that are grouped by this relation group. Note that this is not a containment
association, i.e., a single relation may be grouped by several RequirementRelationGroups.

Constraints
No additional constraints

Semantics

11.2.13 RequirementsRelationship (from Requirements) {abstract}

Generalizations

¢ Relationship (from Elements)
Attributes

No additional attributes
Associations

No additional associations
Constraints

No additional constraints

Semantics

11.2.14 Satisfy (from Requirements)

Generalizations

¢ RequirementsRelationship (from Requirements)
Description

The Satisfy is a relationship metaclass, which signifies the relationship between a Requirement
and an element intended to satisfy the Requirement.

Attributes
No additional attributes
Associations

o satisfiedRequirement : Requirement [*]
List of Requirements that are satisfied by the client ADLElement or satisfied by the client
AUTOSAR element.

o satisfiedUseCase : UseCase [*]
List of satisfied UseCases that are satisfied by the client EAElements or satisfied by the
client AUTOSAR elements.

Dependencies

©2008-2010 The ATESST2 Consortium 103 (227)

EAST-ADL Domain Model Specification version 2.1

o satisfiedBy : Identifiable [1..*]
«instanceRef»

Constraints

[1] The EAElement in the association satisfiedBy may not be a Requirement or
RequirementContainer.

[2] An element of type Satisfy is only allowed to have associations to either elements of type
UseCase (see satisfiedUseCase) or elements of type Requirement (see satisfiedRequirement).
Not both at the same time!

Semantics

The Satisfy metaclass signifies a satisfied requirement/satisfied by relationship between a set of
Requirements and a set of satisfying entities, where the maodification of the supplier Requirements
may impact the satisfying client entities. The Satisfy metaclass implies the semantics that the
satisfying client entities are not complete without the supplier Requirement.

©2008-2010 The ATESST2 Consortium 104 (227)

EAST-ADL Domain Model Specification version 2.1

12 UseCases

12.1 Overview
Iderfifizble: Iderfifiah!
EAFzchageableElenent AR Re s
Elemrents. Confexf + categony: String [0..1]
+ shortMame: [dentifier
+ wuid: String
1. +satisfiedBy /M 1.7
+traceableSpecification = E
EAFzchageableElement .xinstanlceﬂefx-
Elenrenfs:: E
TrecezbleSpecificafion
Actor — RegquirementsRelationshio
+ text: Sting [0..1] Requirements:: Satisfy
+zatisfiedUseCase | ,™
RedefinableElenent UseCasea
. 1 fT\ 1 fT\1 1
+ C +extension
HsEL AR 1 +extendedCase +addition +includingC ase
+extensionPoint | ¢ +extend | 7 = = = |+include
ExtensionPoint . X S aHor shig Relationshia
+extensionLocation Extend Include

1.7

Figure 18. Diagram for UseCase.

12.2 Element Descriptions

12.2.1 Actor (from UseCases)

Generalizations

e TraceableSpecification (from Elements)
Description

Actor represents a type of role played by an entity that interacts with the UseCase, e.g. by
exchanging signals and data, but which is external to the subject, i.e., in the sense that an
instance of an Actor is not a part of the instance of its corresponding subject. Actors may
represent roles played by human users, external hardware, or other subjects. Note that an Actor

©2008-2010 The ATESST2 Consortium 105 (227)

EAST-ADL Domain Model Specification version 2.1

does not necessarily represent a specific physical entity but merely a particular facet (i.e., "role") of
some entity that is relevant to the specification of its associated UseCases. Thus, a single physical
instance may play the role of several different Actors and, conversely, a given Actor may be
played by multiple different instances. Since an Actor is external to the subject, it is typically
defined in the same classifier or package that incorporates the subject classifier.

Attributes

No additional attributes
Associations

No additional associations
Constraints

No additional constraints

Semantics

12.2.2 Extend (from UseCases)

Generalizations

¢ Relationship (from Elements)
Description

Extend represents the specification that the behavior of a UseCase may be extended by the
behavior of another (usually supplementary) UseCase. The extension takes place at one or more
specific ExtensionPoints defined in the extended UseCase. Note, however, that the extended
UseCase is defined independently of the extending UseCase and is meaningful independently of
the extending UseCase. On the other hand, the extending UseCase typically defines behavior that
may not necessarily be meaningful by itself. Instead, the extending UseCase defines a set of
modular behavior increments that augment an execution of the extended UseCase under specific
conditions. Note that the same extending UseCase can extend more than one UseCases.
Furthermore, an extending UseCase may itself be extended.

Attributes
No additional attributes
Associations

e extensionLocation : ExtensionPoint [1..*]
Identifies a point where the behavior of a UseCase can be augmented with elements of
another (extending) UseCase.

e extension : UseCase [1]
The (usually supplementary) UseCase that extend the UseCase.

o extendedCase : UseCase [1]
The UseCase that is extended.

Constraints
No additional constraints

Semantics

©2008-2010 The ATESST2 Consortium 106 (227)

EAST-ADL Domain Model Specification version 2.1

12.2.3 ExtensionPoint (from UseCases)

Generalizations

¢ RedefinableElement (from UseCases)
Description

ExtensionPoint represents a feature of a UseCase that identifies a point where the behavior of a
UseCase can be augmented with elements of another (extending) UseCase.

Attributes
No additional attributes
Associations

e useCase : UseCase [1]
The UseCase that can be augmented with elements of another (extending) UseCase.

Constraints
No additional constraints

Semantics

12.2.4 Include (from UseCases)

Generalizations

¢ Relationship (from Elements)
Description

Include is a specialization of the Relationship and represents a relationship between two
UseCases, implying that the behavior of the included UseCase is inserted into the behavior of the
including UseCase. The including UseCase may only depend on the result (value) of the included
UseCase. This value is obtained as a result of the execution of the included UseCase. Note that
the included UseCase is not optional, and is always required for the including UseCase to execute
correctly.

Attributes
No additional attributes
Associations

e addition : UseCase [1]
UseCase providing behavior to include.

e includingCase : UseCase [1]
Including UseCase.

Constraints
No additional constraints

Semantics

12.2.5 RedefinableElement (from UseCases) {abstract}

©2008-2010 The ATESST2 Consortium 107 (227)

EAST-ADL Domain Model Specification version 2.1

Generalizations
None
Description

RedefinableElement represents an element that, when defined in the context of a classifier, can be
redefined more specifically or differently in the context of another classifier that specializes
(directly or indirectly) the context classifier

A redefinable element is a named element that can be redefined in the context of a generalization.
The RedefinableElement is an abstract metaclass.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

12.2.6 UseCase (from UseCases)

Generalizations

e TraceableSpecification (from Elements)
Description

A UseCase specifies the required usage of a system. Typically, they are used to capture the
functional requirements of a system, that is, what a system is supposed to do. Strictly speaking,
the term "use case" refers to a use case type. An instance of a UseCase refers to an occurrence
of the emergent behavior that conforms to the corresponding use case type. Such instances are
often described by interaction specifications.

Attributes
No additional attributes
Associations

e extensionPoint : ExtensionPoint [*]
An ExtensionPoint identifies a point where the behavior of a UseCase can be augmented
with elements of another (extending) UseCase.

e include : Include [*]
Include is a Relationship between two UseCases; the behavior of the included UseCase is
inserted into the behavior of the including UseCase.

e extend : Extend [*]
This Relationship specifies that the behavior of a UseCase may be extended by the
behavior of another (usually supplementary) UseCase.

Constraints

No additional constraints

©2008-2010 The ATESST2 Consortium 108 (227)

EAST-ADL Domain Model Specification version 2.1

Semantics

©2008-2010 The ATESST2 Consortium 109 (227)

EAST-ADL Domain Model Specification version 2.1

13 VerificationValidation

13.1 Overview

Many different verification and validation (V&V) techniques, methods, and tools are applied during
the development of electrical/electronic systems. Different techniques are applicable at different
abstraction levels. Also, choosing a technique depends on the properties being validated and/or
verified. Furthermore, each partner in a project may develop and employ his own V&V processes
and activities. Hence it is impossible for EAST-ADL to model all the objects that can be required by
all the possible V&V techniques. As a consequence, EAST-ADL provides the means for planning,
organizing and describing V&V activities on a fairly abstract level, and defines the links between
those V&YV activities, the satisfied and verified requirements, and the objects modeling the system
(Functional Analysis Architecture, Functional components, Logical Tasks, etc.). EAST-ADL
describes the common parts of all V&V techniques, including: the results expected from the V&V
activities, the actual results which were obtained when applying the V&V techniques, and how the
V&V activities are constrained. Information that is specific to an individual V&V technique is not
described in EAST-ADL, but a place for storing this information is provided.

Individual V&V techniques may be used once or at several stages during an overall V&V effort.
Some of them are specific to one modeling design stage; others can be applied at various design
stages.

A set of V&V techniques and activities is necessary in order to completely verify and validate a
given system. Often these techniques and activities are employed and performed by many
different teams and departments, even by different companies. This situation demands the
planning and organization of all V&V related information.

A very important aspect of V&V support in EAST-ADL is the distinction between abstract and
concrete V&YV information:

(1) At an abstract level, verification and validation information is defined without referring to a
concrete testing environment and without specifying stimuli or the expected outcome of a
particular VVProcedure on a detailed technical level.

(2) On the concrete level, verification and validation information specifies a concrete testing
environment and provides all necessary details for testing, e.g. stimuli and expected outcomes, on
a concrete technical level applicable to that testing environment.

Using a "what vs. how" definition of requirements one could say: the abstract level defines what
needs to be done to verify and validate a certain system, but not precisely how this is done.
Conversely, the concrete level defines the precise technical details of particular testing
environments. The abstract VVCases and VVProcedures for a particular system form a "to-do"-list,
which describes what needs to be done when actually testing the system with a concrete testing
environment, but in a form applicable to all conceivable testing environments.

©2008-2010 The ATESST2 Consortium 110 (227)

EAST-ADL Domain Model Specification version 2.1

iderdifizble: Identiftable

+wwSubject

+ categone: String [0..1]
+ shortName: |dentifier
+ uwuid: String

1.5

+abstrachVC aze 0.4 Freceable Soecification oA
Wlase

0.r

+wuT arget

_/__/—_ﬁ Wy Target

+element

Treeeable Speciffeation

(Reg wireare tzfel i orsiio

+eoncreteVCase
0.

¢ m«‘ﬁxxxx

+uerifie dByCase

+abstractyWFrocedure 0.1

[

+wwFrocedure
® forderad}

WY Procedure

Traeeshle Speciftoation

4

+wwlog =

Tr@oeahle Specification

+ date: Sting

+performedWProcedurs

Wvlog ‘—____‘__‘
0.1

1

+uerifie dByF rocedure

“Warify

1.7
\+verifiedRequirement

Reguireamert Soecifcaiion Oect
Requirernent=::Requirerment

+ formalism: String [0..1]
+ uil: String [0..1]

Figure 19. Diagram for Verification & Validation.

Cambext
“erification™alidation 0.

¢

+wvlC ase

+uw T arget

Tfrgceahle Specification
“WwTarget

1.7 +wwTarget

. Trzceable Specification
+conereteVWFrocedure 0.7 HwwStimuli S muli
+wvlntendedOutcome T bl g -
. Traceahle Speciffcation i er:tcez :D‘fﬁecr feaian
+nwdctualOuteome Wy Actual Outcome =nde Fame
0.1
+intendedDutcame
. |ReguireaentzRelationshio
+verify .
“erify
=
1.7 i
E +werifiedByC aze
fi@ceahle Speciffeation
WWCase
+eoncrete’t Y Caze
I:I =
% +abstractCaze 0.1
0.1

Figure 20. Diagram for Verification and Validation Organization.

13.2 Element Descriptions

13.2.1 VerificationValidation (from VerificationValidation)

Generalizations

©2008-2010 The ATESST2 Consortium

111 (227)

EAST-ADL Domain Model Specification version 2.1

e Context (from Elements)
Description

The collection of verification and validation elements. This collection can be used across the
EAST-ADL abstraction levels.

Attributes
No additional attributes
Associations

e WwTarget : VVTarget [*]

e wvCase : VVCase [*]

o verify : Verify [*]
Constraints

No additional constraints

Semantics

13.2.2 Verify (from VerificationValidation)

Generalizations

¢ RequirementsRelationship (from Requirements)
Description

Verify is a relationship metaclass, which signifies a dependency relationship between a
Requirement and a VVCase. It shows the relationship when a client VVCase verifies the supplier
Requirement.

Attributes
No additional attributes
Associations

o verifiedRequirement : Requirement [1..*]
The set of Requirements which the client VVCase verify.

¢ verifiedByProcedure : VVProcedure [*]
The AbstractVVProcedures used to verify the Requirement.

o verifiedByCase : VVCase [1..*]
TheVVCase that verifies the supplier Requirement

Constraints
No additional constraints
Semantics

The Verify metaclass signifies a refined requirement/verified by relationship between a
Requirement and a VVCase, where the modification of the supplier Requirement may impact the
verifying client VVCase. The Verify metaclass implies that the semantics of the verifying client
VVCase is not complete, without the supplier Requirement.

13.2.3 VVActualOutcome (from VerificationValidation)

©2008-2010 The ATESST2 Consortium 112 (227)

EAST-ADL Domain Model Specification version 2.1

Generalizations

¢ TraceableSpecification (from Elements)
Description

VVActualOutcome represents the actual output of the testing environment as represented by
VVTarget when triggered by the VVStimuli of the ConcreteVVProcedure. This is defined by the
association 'performedVVProcedure' of the containing VVLog. It should be equivalent to the
VVintendedOutcome defined by the association 'intendedOutcome’.

Attributes
No additional attributes
Associations

¢ intendedOutcome : VVIntendedOutcome [0..1]
Denotes the VVIntendedOutcome that this actual outcome must match.

Constraints
No additional constraints

Semantics

13.24 VVCase (from VerificationValidation)

Generalizations

e TraceableSpecification (from Elements)
Description

VVCase represents a V&V effort, i.e. it specifies concrete test subjects and targets and provides
stimuli and the expected outcome on a concrete technical level.

Attributes
No additional attributes
Associations

e vvProcedure : VVProcedure [*] {ordered}
The VVProcedures for this VVCase.

e wTarget : VVTarget [1..*]
The VVTargets for this VVCase. See association ‘vvSubjects’ for more information.

e wlog: VVLog [*]
The VVLogs captured while executing this ConcreteVVCase.

e vvSubject : Identifiable [1..*]
The elements that are being verified and validated by this VVCase.

Usually this will be a subset of those elements which are realized by the VVTarget(s) of the
VVCase; but this need not always be the case.

The difference between the vvSubjects and the entities which are realized by the case's
VVTarget(s), is that the vvSubjects are related to the primary, overall objective of the
ConcreteVVCase, while the realized entities can comprise more than these. For example:

(a) For technical reasons additional entities need to be realized only to permit the testing of
the entities of actual interest or

©2008-2010 The ATESST2 Consortium 113 (227)

EAST-ADL Domain Model Specification version 2.1

(b) If a VVTarget is reused among many ConcreteVVCases and therefore realizes more
entities than are actually being tested by any single ConcreteVVCase.

e concreteVVCase : VVCase [0..%]
A concreteVVCase not only describes "what" needs to be done for a particular verification
and validation effort, but also the necessary details of "how" this is done.

e abstractVVCase : VVCase [0..1]
An abstractVVCase describes "what" needs to be done.

Constraints
No additional constraints

Semantics

13.2.5 VVintendedOutcome (from VerificationValidation)

Generalizations

e TraceableSpecification (from Elements)
Description

VVintendedOutcome represents the expected output of the testing environment represented by
VVTarget when triggered by the corresponding VVStimuli of the containing ConcreteVVProcedure.

Since this entity only occurs on the concrete level (i.e. within the context of a ConcreteVVCase),
the output must be provided in a form that can be directly compared to the output of the
VVTarget(s) defined for the containing ConcreteVVCase.

Attributes

No additional attributes
Associations

No additional associations
Constraints

No additional constraints

Semantics

13.2.6 VVLog (from VerificationValidation)

Generalizations

e TraceableSpecification (from Elements)
Description

ConcreteVVCase represents the precise description of a V&V effort on a concrete technical level
and thus provides all necessary information to actually perform this V&V effort.

However, it does not represent the actual execution of the effort.

This is the purpose of the VVLog. Each VVLog metaclass represents an execution of a
ConcreteVVCase.

©2008-2010 The ATESST2 Consortium 114 (227)

EAST-ADL Domain Model Specification version 2.1

For example, if the HIL test of the wiper system with a certain set of stimuli was performed on
Friday afternoon and, for checkup, again on Monday, then there will be one ConcreteVVCase
describing the HIL test and two VVLogs describing the test results from Friday and Monday
respectively.

Attributes

e date : String [1]
Date and time when this log was captured.

Associations

o performedVVProcedure : VVProcedure [1]
Associated procedure.

¢ VvActualOutcome : VVActualOutcome [*]
Set of outcome results.

Constraints
No additional constraints

Semantics

13.2.7 VVProcedure (from VerificationValidation)

Generalizations

e TraceableSpecification (from Elements)
Description

VVProcedure represents an individual task in a V&V effort (represented by a VVCase), which has
to be performed in order to achieve that effort's overall objective. As with VVCases, the definition
of VVProcedures is separated in to two levels: an abstract and a concrete level represented by the
entities AbstractVVProcedure and ConcreteVVProcedure.

The concreteVVProcedure metaclass represents such a task on a concrete level It is defined with
a concrete testing environment in mind and provides stimuli and the expected outcome of the
procedure in a form which is directly applicable to this testing environment.

Attributes
No additional attributes
Associations

e abstractVVProcedure : VVProcedure [0..1]
o wStimuli : VVStimuli [*]
Set of involved stimuli.

e concreteVVProcedure : VVProcedure [0..*]
e wintendedOutcome : VVintendedOutcome [*]
Set of intended outcomes.

Constraints
No additional constraints

Semantics

©2008-2010 The ATESST2 Consortium 115 (227)

EAST-ADL Domain Model Specification version 2.1

13.2.8 VVStimuli (from VerificationValidation)

Generalizations

e TraceableSpecification (from Elements)
Description

VVStimuli represents the input values of the testing environment represented by VVTarget in order
to perform the corresponding VVProcedure.

Since this entity only occurs on the concrete level (i.e. within the context of a ConcreteVVCase),
the input values must be provided in a form that is directly applicable to the VVTarget(s) defined
for the containing ConcreteVVCase.

Attributes

No additional attributes
Associations

No additional associations
Constraints

No additional constraints

Semantics

13.2.9 VVTarget (from VerificationValidation)

Generalizations

e TraceableSpecification (from Elements)
Description

VVTarget represents a concrete testing environment in which a particular V&V activity can be
performed. This can be physical hardware or it can be pure software in case of a test by way of
design level simulations.

Usually, a VVTarget will be a realization of one or more elements. However, there are cases in
which this is not true, for example when a VVTarget represents parts of the system's environment.
Therefore the association to element has a minimum cardinality of O.

VVTargets can be reused across several ConcreteVVCases.
Attributes

No additional attributes

Associations

e element : Identifiable [0..*]
Alternative would be to remove this association and use Realize for the dependency
between VVTarget and EAElement.

Constraints
No additional constraints

Semantics

©2008-2010 The ATESST2 Consortium 116 (227)

EAST-ADL Domain Model Specification version 2.1

14 Interchange

14.1 Overview

The interchange part of an EAST-ADL system model is for exchanging model data with external
stakeholders. E.g. it provides elements (see RIFArea) for importing and exporting requirements
specifications into and out of an EAST-ADL system model.

+parentContainer

Cotext
TR ot - Troceable Soecifoation o4
RiFAres 0.1 - .
lordered} Requirements:: .—_I
0.1 +rootRequirementContainer Requirements Container
+childContainer™
‘[‘3\ /_‘t‘i\ +referencingContainer 1.7 lorderad)
RIFExpartAres RIFImportArea 8.1 +containedReqSpecObject

+interchangeReqSpecObject | Traceahle Specification

Reguirenmernis:
ReguirementipeciffcafionObfect

+usarbefined Type

EAPackageamleElement ﬁ Y&

Useratributes::
UserattributeEle mentType Requirements:: Requirements::
Requirements Relatedinfor mation Requirermeri

+ walidFor: String [0..1]

+ formalism: String [0..1]
+extendedElementType 0.1 + url; String [0..1]

Figure 21. Diagram for RIF Area.

14.2 Element Descriptions

14.2.1 RIFArea (from Interchange) {abstract}

Generalizations

e Context (from Elements)
Description

An extra allocated part of the EAST-ADL System Model that contains Requirement Specific Data
(Container, Regs etc...) from RIF Import and RIF Export.

In the context of requirement engineering, and considering the possibility of importing/exporting
requirement related data via RIF, the feature uuid will be used to check that two elements are
semantically the same and thus should stay referenced together via a Multi-Level reference link.

Requirement data to be imported/exported will be put into an RIFArea. Requirement data elements
which are not inside an RIFArea but which have semantically equal element in the RIFAreas (such
elements have the same uuid value) will be connected with the appropriate elements in the
RIFArea using Multi-Level reference links.

Attributes
No additional attributes

Associations

©2008-2010 The ATESST2 Consortium 117 (227)

EAST-ADL Domain Model Specification version 2.1

¢ rootRequirementContainer : RequirementsContainer [0..*] {ordered}
¢ interchangeReqSpecObject : RequirementSpecificationObject [*]
o userDefinedType : UserAttributeElementType [*]

Contained defined types.

Constraints
No additional constraints

Semantics

14.2.2 RIFExportArea (from Interchange)

Generalizations

¢ RIFArea (from Interchange)
Description

Contains (clones of) requirement specific data to be exported in RIF format.
Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

14.2.3 RIFImportArea (from Interchange)

Generalizations

¢ RIFArea (from Interchange)
Description

Contains requirement specific data to be imported from an external RIF file.

When an element is imported from an external source the uuid will be taken from the given
external exchange data file, because the identifier is globally unique and should not be changed
anywhere.

Attributes

No additional attributes
Associations

No additional associations
Constraints

No additional constraints

Semantics

©2008-2010 The ATESST2 Consortium 118 (227)

EAST-ADL Domain Model Specification version 2.1

©2008-2010 The ATESST2 Consortium 119 (227)

EAST-ADL Domain Model Specification version 2.1

Part VI Timing

©2008-2010 The ATESST2 Consortium 120 (227)

EAST-ADL Domain Model Specification version 2.1

15 Timing

15.1 Overview

ExecutionTi meConstraint

+wariation 1

TinringConsraint

EAE et
+mode

EAElewent

Behzvior:Mode

+

+upper DI..1 +lower 0,1

EAElement

condition: String

TirneDuration

+ czeCode: CzzCodeType=Time
+ cseCodeFactor int=1

EAElement |+preceding

wdtpPrototypes 1
FunciionModeling::
FurcfianP rofefype

PrecedenceConstraint

+ walue: Flopat=0o00 (0 pEI=---sossmcs- Sommmmmmmmes
1.7 lordered] «instanceRefs
+HargetesignFunction +targetDesignFunctionPrototype
0.1 0.1
Funetion Tyoe AllocatezbleElement
Functionhiodeling:: 0.1 +part FunctionModeling:
DesignFunctionType | DesignFunction Pratotype
1
+ype wisOfTypes
Figure 22. Diagram for Execution time.
Evenf
+timingDescription EALiearant
Cordert . - “-:ﬂ
) - TimingDescriofion + izStateChange: Boolean = tue
Timing 0.1 =
+stimulus 1.7 +response 1.7
EAElement
+timingCanstraint TirrirgCorsiaint
= EwvertChzain
0.1
0.1 a.1
+segment® tstrand *
forderned}
+upper|0..1 +lowver |01
+made =
EAElememt
EAElenent

Ti e Duration

+

czeCode: CseCodeType = Time
czeCodeFactor int=1
value: Float=0.0

Behawior::Mode

+ condition: String

Figure 23. Diagram for the extensions of EAST-ADL abstraction layers with timing information.
Timing description and timing constraints are contained in elements dedicated to the abstraction

level.
15.2 Element Descriptions
15.2.1 Event (from Timing) {abstract}

Generalizations

©2008-2010 The ATESST2 Consortium

121 (227)

EAST-ADL Domain Model Specification version 2.1

e TimingDescription (from Timing)
Description

An Event (E) denotes a distinct form of state change in a running system, taking place at distinct
points in time called occurrences of the event. An event may also report a [current] state. In that
case, the event occurs periodically. For example, the "driver door has been opened" is an event
indicating a state change; whereas the "driver door is open" is an event reporting a state.

A running system can be observed by identifying certain forms of state changes to watch for, and
for each such observation point, noting the times when changes occur. This notion of observation
also applies to a hypothetical predicted run of a system or a system model from a timing
perspective; the only information that needs to be in the output of such a prediction is a sequence
of times for each observation point, indicating the times that each event is predicted to occur.

The occurrence of an event either stimulates an execution, or is caused by an execution [as a
response to another event that occurred before]. In the first case the event is called Stimulus (S)
and in the latter case it is called Response (R). Stimuli always precede responses; and responses
always succeed stimuli.

An event occurs instantaneously, which means that an event occurs at an instant of time without
any duration. In addition, an event can appear any number of times and the subsequent
occurrences may follow a specific pattern, like periodic, sporadic, or in sudden bursts. Each of
these occurrences has a unique time instant.

The distinction between an event and its occurrence is usually obvious from the considered
context (causal and temporal). The event is not defined by its occurrences, but rather by a
description expressing its purpose.

Attributes

¢ isStateChange : Boolean = true [1]
This attribute indicates whether the event reports a state change or a [current] state. If the
boolean value is TRUE, then the event reports a state change (no over-/undersampling).

If the boolean value is FALSE, then the event reports a [current] state.
By default, the value of this attribute is TRUE.

Associations

No additional associations

Constraints

[1] In the case that the event reports a [current] state (isStateChange is FALSE), the event must
have a periodic event model [or a pattern model]. Rationale: The [current] state shall be reported
consistently and periodically.

Semantics

15.2.2 EventChain (from Timing)

Generalizations

e TimingDescription (from Timing)
Description

Event chains describe the temporal behavior of a number of steps to be taken to respond to one or
more events. [An event chain is also used to express that a temporal requirement/constraint is

©2008-2010 The ATESST2 Consortium 122 (227)

EAST-ADL Domain Model Specification version 2.1

imposed on these steps (-> requirement).] Such events could be observed in a given system and
are categorized into stimuli and responses.

Event chains can refer to other event chains which are then called event chain segments and
strands. Segments are sequential event chains refining an EventChain, while strands define
parallel event chains that refine an EventChain. An EventChain can be both a segment and a
strand at the same time. An event chain respectively event chain segment can be atomic which
means it is not refined to other event chains.

Attributes
No additional attributes
Associations

e segment : EventChain [*] {ordered}
Referred EventChains that are not parallel and in sequence refine this EventChain.

e response : Event [1..*]
The Response element is the entity to describe an event that is a response to a stimulus
that occurred before.

e stimulus : Event [1..*]
The Stimulus element is the entity to describe an event that stimulates the steps to be
taken to respond to this event.

e strand : EventChain [*]
Parallel EventChains refining this EventChain.

Constraints

[1] The cardinality of strand shall be either 0 or greater than 1. Rationale: Only values > 1 express
true parallelism.

Semantics

An EventChain references two groups of events: stimulus and response. The semantics are that
each event in the stimulus group somehow causes, or at least affects the value of all events in the
response group. However, since questions about causality and value influence clearly involve the
semantics of the underlying structural model, this aspect of an EventChain is semantically outside
its scope. Instead, delay constraint semantics are defined solely in terms of the times at which the
stimulus and response events occur, irrespective of whether there actually exists a causal
connection between these events in the structural model.

15.2.3 ExecutionTimeConstraint (from Timing)

Generalizations

e TimingConstraint (from Timing)
Description

ExecutionTimeConstraint expresses the execution time of a function under the assumption of a
nominal CPU that executes 1 "function second" per second. Function allocation will decide the
actual execution time by multiplication with the relative speed of the host CPU.

Example:

The ECU is 20% faster than a standard ECU (e.g. in a certain context, execution times are given
assuming a nominal speed of 100 MHz; Our CPU is then 120 MHz)

©2008-2010 The ATESST2 Consortium 123 (227)

EAST-ADL Domain Model Specification version 2.1

The function is activated by a time trigger or a port trigger. The function starts execution some
time after activation, depending on e.g. interference and/or blocking from other functions on the
same resource.

Immediately on start, the function reads input data on all ports. Functions write data at the latest
when the execution time has elapsed (which is after the execution time plus any blocking and
interference time).

Attributes
No additional attributes
Associations

o targetDesignFunction : DesignFunctionType [0..1]
Identifies the DesignFunction with this execution time.

¢ targetDesignFunctionPrototype : DesignFunctionPrototype [0..1]
Identifies the DesignFunctionPrototype with this execution time, and may be used when the
constraint applies to a prototype.

e variation : TimeDuration [1]
Denotes the allowed variation in execution time, i.e. between minimal and maximal
execution time.

Constraints

[1] An ExecutionTimeConstraint either identifies a FunctionType or a FunctionPrototype as its
target function.

[2] variation shall be a value between 0 and upper-lower.

Semantics

lower (from TimingConstraint) denotes the minimal best case execution time.
upper (from TimingConstraint) denotes the maximal worst case execution time.
variation denotes the allowed variation in execution time, i.e. maximal minimal execution time.
Example:

lower=5

upper=10

variation=2

best case execution time of 6 and worst case of 7 is within this constraint

best case execution time of 6 and worst case of 9 violates this constraint

If a measured value is characterized, variation is not used, as it is always upper-lower, e.g.
lower=6 and upper=9 above. In this example, the ExecutionTimeConstraint would be a Realization
of a VVActualOutcome.

15.2.4 PrecedenceConstraint (from Timing)

Generalizations

e TimingConstraint (from Timing)
Description

The PrecedenceConstraint represents a particular constraint applied on the execution sequence of
functions.

©2008-2010 The ATESST2 Consortium 124 (227)

EAST-ADL Domain Model Specification version 2.1

Attributes

No additional attributes
Associations

No additional associations
Dependencies

e successive : FunctionPrototype [1..*]

«instanceRef»

preceding : FunctionPrototype [1]
«instanceRef»

Constraints
No additional constraints

Semantics

The semantics for the PrecedenceConstraint metaclass is to define an association relationship
between Functions, indicating the association relationship such that all predecessors have

completed before the successors are started.

Note: Without a precedence relation,

Functions are executed according to their
dependencies, if these are uni-directional. For bi-directional data dependencies, execution order is

not defined unless the PrecedenceDependency relationship is used.

15.2.5 TimeDuration (from Timing)

Generalizations

EAElement (from Elements)
Description

CseCodeType

1 ysec
10 psec
100 psec
1 msec
10 msec
100 msec
1sec

10 sec

1 min

1lh

1d

Angular degrees

=
o

100:
101:
102:

Revolutions 360 degrees

Cycle 720 degrees

©2008-2010 The ATESST2 Consortium

Time
Time
Time
Time
Time
Time
Time
Time
Time
Time
Time
Angle
Angle

Angle e.g. in case of IC engines

125 (227)

EAST-ADL Domain Model Specification version 2.1

103: Cylinder segment Combustion e.g. in case of IC engines

998: When frame available Time Source defined in the ASAP 2
keyword, FRAME

999: Always if there is new value Calculation of a new upper range limit after receiving

a new partial value, e.g. when calculating a complex trigger condition
1000: Non deterministic Without fixed scaling

If, for example, the value in swCseCodeFactor is 360 and the value in swCseCode is 100, this is
equivalent to the value 1 in swCseCodeFactor and the value 101 in swCseCode.

CseCodeType is from AUTOSAR and MSR/ASAM.

Note that we have set the cseCodeType for 1 psec to 0 (error in AUTOSAR R3). And have
changed cseCodeType 2 to 100 usec (error in MSR).

Attributes

e cseCode : CseCodeType = Time [1]
This is normally time, note that when it is expressed as angle it can be converted to time.

o cseCodeFactor : int =1 [1]
Is normally equal to 1.

e value : Float = 0.0 [1]
The actual value complemented with the cseCode.

Associations

No additional associations
Constraints

No additional constraints

Semantics

15.2.6 Timing (from Timing)

Generalizations

e Context (from Elements)
Description

The collection of timing constraints and their descriptions in the form of events and event chains.
This collection can be done across the EAST-ADL abstraction levels.

Attributes
No additional attributes
Associations

e timingConstraint : TimingConstraint [*]
e timingDescription : TimingDescription [*]
Constraints

No additional constraints

Semantics

©2008-2010 The ATESST2 Consortium 126 (227)

EAST-ADL Domain Model Specification version 2.1

15.2.7 TimingConstraint (from Timing) {abstract}

Generalizations

o EAElement (from Elements)
Description

TimingConstraint is an abstract entity that identifies a mode.
Attributes

No additional attributes

Associations

e mode : Mode [*]
The mode where the TimingConstraint is valid.

e upper : TimeDuration [0..1]
denotes a maximal value (e.g. worst case execution time)

e lower : TimeDuration [0..1]
denotes a minimal value (e.g. best case execution time)

Constraints
[1] upper shall be greater or equal to lower.
Semantics

The TimingConstraint does not describe what is classically referred to as a "design" constraint but
has the role of a property, requirement, or a validation result. It is a requirement if this
TimingConstraint refines a Requirement (by the Refine relationship). The TimingConstraint is a
validation result if it realizes a VVActualOutcome, it is an intended validation result if it realizes a
VVintendedOutcome, and in other cases it denotes a property.

15.2.8 TimingDescription (from Timing) {abstract}

Generalizations

o EAElement (from Elements)
Description

An abstract metaclass describing the timing events and their relations within the model.
Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

©2008-2010 The ATESST2 Consortium 127 (227)

EAST-ADL Domain Model Specification version 2.1

16 TimingConstraints

16.1 Overview

This section describes the timing constraints.

ReactionConstraint

Otpt Synichroni z=tion Constraint

tetrand ® Timérg De serohion
% Timing::EwerntChzain z
+segment ®
derad
+ecope forderad}
0.1
OelayCansfraint
0.1 21 %7
EAElement
Tirvirg:: TinringCansfraint
0.1 0.1
+naminal |0..1 +jitter|0..1 +lower |0..1 +upper|0..1
EAElement
Timing::TimeOuration
+iuidth

+ividth

1

+ w=eCode: CseCodeType = Time
+ zeCodeFacton int=1
+ walue: Float=0.10

Figure 24. The constraints shown here imposes constraints on Event Chain.

©2008-2010 The ATESST2 Consortium

128 (227)

AgeTimingConstraint

Input Synichroni zation Constraint

EAST-ADL Domain Model Specification version 2.1

Tiarimg Comstraint TiwingDesedobion
. +event A
EvenfConsfraint Timing::Everf

0.1 + izStateChange: Boolean = true

+offset |01

.EAE.lem}cﬁ *period

iodi i +period

FeriodicEwvert Constraint P Timning: TimeDuration ; oA
0.1 1 - ;

rmin Interfurival Ti + wmeCode: CzeCodeType = Time | +IMEr

L minim MBIAMMATTIME | cecodeFactor int=1 -

0.1 q|t walue: Float=00 1 u.1
+jitter +minimutrInterfrrival Time
o

PatternEwvert Constraint

-
0.4 1 1 0.1
SporadicEwvent Constraint . +ocourence
+period _’
. 1.7 0.1
0.1 1
. i . fordered}
+minimuminterfrrival Time
0.1 1 -
. . . +maximuminterdrival Time | #rbitraryEvent Constraint
+maximuminterfrrival Time o
- 1.7 0.1
0.1 0.1
+jitter +minimuminterarmival Time
el
0.1 0.1 1.7 0.4

Figure 25. The constraints shown here imposes constraints on Event.

16.2 Element Descriptions

16.2.1 AgeTimingConstraint (from TimingConstraints)

Generalizations

e DelayConstraint (from TimingConstraints)
Description

Different tolerances on over-/undersampling can be identified when the solution has been
modeled.

An age constraint is of interest in control engineering when looking back through the system.

In case of over- or undersampling, a one-to-one relation is not possible between the occurrences
of stimuli and responses of the associated event chain. Thus, the age constraint defines the
semantic of which delay must be constrained.

The attribute upper is applicable in worst-case analysis.
The attribute lower is applicable in best-case analysis.
Attributes

No additional attributes

Associations

No additional associations

©2008-2010 The ATESST2 Consortium 129 (227)

EAST-ADL Domain Model Specification version 2.1

Constraints

No additional constraints

Semantics

16.2.2

ArbitraryEventConstraint (from TimingConstraints)

Generalizations

EventConstraint (from TimingConstraints)

Description

The Arbitrary Event Model describes whether an event occurs occasionally, singly, irregularly or
randomly. The primary purpose of this event model is to abstract event occurrences captured by
data acquisition tools (background debugger, trace analyzer, etc.) during the operation of a
system.

Attributes

No additional attributes

Associations

minimuminterArrivalTime : TimeDuration [1..*]

The set of minimum inter-arrival times specifies the minimum inter-arrival time between two
or more subsequent occurrences of the event. The first element in the set specifies the
minimum inter-arrival time between two subsequent occurrences of the event among the
given occurrences. The second element in the set specifies the minimum inter-arrival time
between three subsequent occurrences of the event among the given occurrences; and so
on.

maximuminterArrivalTime : TimeDuration [1..*]

The set of maximum inter-arrival times specifies the maximum inter-arrival time between
two or more subsequent occurrences of the event. The first element in the set specifies the
maximum inter-arrival time between two subsequent occurrences of the event among the
given occurrences. The second element in the set specifies the maximum inter-arrival time
between three subsequent occurrences of the event among the given occurrences; and so
on.

Constraints

[1] The number of elements in the sets minimum inter-arrival time and maximum inter-arrival time
must be the same. Rationale: Consistent specification of arrival times.

Semantics

16.2.3

DelayConstraint (from TimingConstraints) {abstract}

Generalizations

TimingConstraint (from Timing)

Description

DelayConstraints give bounds on system timing attributes, i.e. end-to-end delays, periods, etc.

©2008-2010 The ATESST2 Consortium 130 (227)

EAST-ADL Domain Model Specification version 2.1

A DelayConstraint can specify one or several of an upper bound, a lower bound or a nominal value
and jitter. For example, [lower=10, upper=20, nominal=15] means a nominal value of 15 +/- 5. This
is equivalent to [nominal=15, jitter=10], i.e. the nominal value varies by +/- 5 around 15. Note that
the nominal value may also vary asymmetrically, e.g. [lower=10, hominal=12, upper=20]. Defining
[nominal=15], without upper/lower or jitter, denotes an exact value of 15 without variations.

The bound will be measured in a given unit, see TimeDuration.
Attributes

No additional attributes

Associations

e jitter : TimeDuration [0..1]
Jitter is the range within which a value varies.

e nominal : TimeDuration [0..1]
The recurring distance between each occurrence.

e scope : EventChain [0..1]
The EventChain on which this constraint is applied.

Constraints

[1] Exactly one of the following combinations of upper, lower, jitter, and nominal shall be specified:
{upper, lower}, {upper, lower, jitter}, {upper}, {lower}, {nominal, jitter}.

Any combination may in addition have a nominal parameter. If nominal is defined, it shall be in the
range [lower ... upper].

Rationale: At least one value is necessary to describe a reasonable DelayConstraint, and the
given combinations are sufficient to describe all possible variations.

Semantics
lower (from TimingConstraint) denotes the minimum value of the actual delay.
upper (from TimingConstraint) denotes the maximum value of the actual delay.

Delay variation at runtime is constrained by means of the jitter value such that the maximal actual
delay-minimum actual delay is less than jitter.

If only {upper, lower} are specified, nominal is assumed to be (lower + (upper - lower) / 2)
If only upper is defined, lower is assumed to be zero, nominal=upper

If only lower is defined, upper is assumed to be infinity and nominal=lower

If no jitter is defined jitter is assumed to be upper-lower.

If {nominal, jitter} is defined, lower=nominal-jitter/2, upper=nominal+jitter/2.

The possible variations and interpretations are shown in the following table. 'L' denotes ‘Lower, ‘U’
denotes 'Upper’, 'N' denotes ‘Nominal', and 'J' denotes 'Jitter'.

L |[U |N |J |Lower | Upper | Nominal | Jitter
| | | | n/a | n/a | n/a | n/a
| | | X |0 |L+J | n/a | <value>
| | X | | O | infinite | <value> | O
| [X | X |N-%J |N+¥%J |<value> | <value>

©2008-2010 The ATESST2 Consortium 131 (227)

EAST-ADL Domain Model Specification version 2.1

| X | | |0 | <value> |L+%(U-L) |U-L

| X | [X |0 | <value> |L+%(U-L) |[<value>

[X | X] |0 | <value> | <value> |U-L

[X | X |X |0 | <value> | <value> | <value>
X | | | | <value> |infinite |n/a |0
X | | | X | <value> |infinite |n/a | <value>
X | | X | | <value> |infinite | <value> |0
X | [X | X |<value> |N+¥%J |<value> | <value>
X | X | | | <value> |<value> |L+%(U-L) |JU-L
X | X | | X |<value> |<value> |L+%(U-L) |[<value>
X [X | X | <value> | <value> |<value> | U-L(1)
X | X | X | X |<value> |<value> |<value> | <value>

(1) In case of symmetric jitter. Otherwise asymmetric jitter.

16.2.4 EventConstraint (from TimingConstraints) {abstract}

Generalizations

e TimingConstraint (from Timing)
Description

An EventConstraint describes the basic characteristics of the way an event occurs over time.
Attributes

No additional attributes

Associations

e offset : TimeDuration [0..1]
In addition an event model may specify an offset, which delays the start of the first period -
the occurrence of the very first event - by the given amount of time.

e event: Event [0..1]
Constraints

No additional constraints

Semantics

16.2.5 InputSynchronizationConstraint (from TimingConstraints)

Generalizations

e AgeTimingConstraint (from TimingConstraints)
Description

InputSynchronizationConstraint is a language entity that expresses a timing constraint on the input
synchronization among the set of stimulus events. Basically, the InputSynchronizationConstraint
looks from the response event(s) into the past to the stimuli events. All stimulus events must occur

©2008-2010 The ATESST2 Consortium 132 (227)

EAST-ADL Domain Model Specification version 2.1

within a given sliding window. The sliding window itself may occur within a time interval specified
by means of a minimum and maximum distance from the response event(s).

Attributes
No additional attributes
Associations

e width : TimeDuration [1]
The width of the sliding window.

Constraints

[1] The set of FunctionFlowPorts referenced by the events should contain only FlowPorts with
direction = in. The rationale for this is that the events shall relate to data on FunctionFlowPorts
which is considered (or shall be) temporally consistent.

[2] The semantics of this constraint requires that there is more than one stimulus Event in the
scope EventChain (each refering to a different FlowPort with direction = in).

[3] The parameters ‘'nominal’ and ‘jitter' (from DelayConstraint) are not relevant for
InputSynchronizationConstraint.

Semantics

The parameters of InputSynchronizationConstraint, see TimingConstraint, constrain the time from
the first stimulus until last stimulus (i.e., maximum skew between these stimuli). Parameter width
defines the sliding window, i.e. the maximum distance between the first and the last stimulus event
shall be smaller or equal to width. Furthermore, the minimum and maximum distances of the
sliding window to the response event(s) is defined by the parameters upper and lower (from
TimingConstraint). In this case, upper denotes the maximal allowed distance from the last
response event to the first stimulus event (looking backwards in time), and lower denotes the
minimal allowed distance from the first response event to the last stimulus event (looking
backwards in time).

A join point is identified by the response event in the scope EventChain.

16.2.6 OutputSynchronizationConstraint (from TimingConstraints)

Generalizations

¢ ReactionConstraint (from TimingConstraints)
Description

OutputSynchronizationConstraint is a language entity that expresses a timing constraint on the
output synchronization among the set of response events. Basically, the
OutputSynchronizationConstraint looks from the stimulus event(s) into the future to the response
events. All response events must occur within a given sliding window. The sliding window itself
may occur within a time interval specified by means of a minimum and maximum distance from the
stimulus event(s).

Attributes
No additional attributes
Associations

e width : TimeDuration [1]
The width of the sliding window.

Constraints

©2008-2010 The ATESST2 Consortium 133 (227)

EAST-ADL Domain Model Specification version 2.1

[1] The set of FunctionFlowPorts referenced by the events should contain only OutFlowPorts. The
rationale for this is that the events shall relate to data on FunctionFlowPorts which is considered
(or shall be) temporally consistent.

[2] The semantics of this constraint require that there is more than one response Events in the
scope EventChain.

[8] The parameters ‘'nominal' and ‘itter' (from DelayConstraint) are not relevant for
OutputSynchronizationConstraint.

Semantics

The parameters of OutputSynchronizationConstraint, see TimingConstraints, constrain the time
from the first response until last response (i.e., maximum skew between these responses).
Parameter width defines the sliding window, i.e. the maximum distance between the first and the
last response event shall be smaller or equal to width. Furthermore, the minimum and maximum
distances of the sliding window to the stimulus event(s) is defined by the parameters upper and
lower (from TimingConstraint). In this case, upper denotes the maximal allowed distance from the
first stimulus event to the first response event, and lower denotes the minimal allowed distance
from the last stimulus event to the first response event.

A fork point is identified by the stimulus event in the scope EventChain.

16.2.7 PatternEventConstraint (from TimingConstraints)

Generalizations

e EventConstraint (from TimingConstraints)
Description

The [Concrete] PatternEventConstraint describes that an event occurs following a known pattern.
Attributes

No additional attributes

Associations

e period : TimeDuration [1]
The period specifies the time interval within which the event occurs any number of times
following a pattern.

e minimuminterArrivalTime : TimeDuration [1]
The minimum inter-arrival time specifies the minimal possible time interval between two
consecutive occurrences of the event within the given period.

e occurrence : TimeDuration [1..*] {ordered}
The set occurrence [1..n] specifies the offset for each occurrence of the event in the
specified period. Each occurrence is specified from the beginning of the period

e jitter : TimeDuration [1]
The jitter specifies maximal possible time interval the occurrence of the events within the
given period can vary (formerly: can be delayed).

Constraints
No additional constraints

Semantics

©2008-2010 The ATESST2 Consortium 134 (227)

EAST-ADL Domain Model Specification version 2.1

16.2.8 PeriodicEventConstraint (from TimingConstraints)

Generalizations

e EventConstraint (from TimingConstraints)
Description

The PeriodicEventConstraint describes that an event occurs periodically.
Attributes

No additional attributes

Associations

e jitter : TimeDuration [1]
The jitter specifies the maximal possible time interval the occurrence of an event can vary
(formerly: be delayed).

e period : TimeDuration [1]
The period specifies the [ideal] time interval between two subsequent occurrences of the
event.

e minimuminterArrivalTime : TimeDuration [1]
The minimum inter-arrival time specifies the minimal possible time interval between two
consecutive occurrences of an event.

Constraints
No additional constraints

Semantics

16.2.9 ReactionConstraint (from TimingConstraints)

Generalizations

e DelayConstraint (from TimingConstraints)
Description

ReactionConstraint is used to impose a timing constraint on an event chain in order to specify
bounds for reacting on the occurrence of a stimulus or stimuli. The intention of this constraint is to
look forward in time.

Compare AgeTimingConstraint.
Attributes

No additional attributes
Associations

No additional associations
Constraints

No additional constraints

Semantics

©2008-2010 The ATESST2 Consortium 135 (227)

EAST-ADL Domain Model Specification version 2.1

16.2.10 SporadicEventConstraint (from TimingConstraints)

Generalizations

EventConstraint (from TimingConstraints)

Description

The SporadicEventConstraint describes that an event occurs occasionally. In general it is
supposed that the event eventually occurs. However, it is also known that some of the events do
not occur for whatsoever reasons.

Note! The parameters minimum inter-arrival time and maximum inter-arrival time must reference
the same point in time. Typically, this is the point in time that specifies the beginning of the period
subject to consideration.

Attributes

No additional attributes

Associations

jitter : TimeDuration [0..1]

The optional parameter jitter specifies the maximal possible time interval the occurrence of
an event can vary (formerly: be delayed). By its nature, a sporadic event can occur at any
time, thus the occurrence is characteristically jittery.

period : TimeDuration [1]
The period specifies the [ideal] time interval between two subsequent occurrences of the
event.

maximuminterArrivalTime : TimeDuration [0..1]
The optional parameter maximum inter-arrival time specifies the maximal possible time
interval between two consecutive occurrences of an event.

The maximum inter-arrival time may be used to describe different cases:
(1) The maximum inter-arrival time is equal to the duration of the period.

(2) The maximum inter-arrival time is used to specify a point in time within the period that
immediately follows the period subject to consideration.

(3) The maximum inter-arrival time is used to specify a point in time within one of the
subsequent periods that follow the period subject to consideration.

minimuminterArrivalTime : TimeDuration [1]
The minimum inter-arrival time specifies is the minimal possible time interval between two
consecutive occurrences of an event.

Constraints

No additional constraints

Semantics

©2008-2010 The ATESST2 Consortium 136 (227)

EAST-ADL Domain Model Specification version 2.1

17 Events

17.1 Overview

This section describes the concept of events for EAST-ADL.

a4 EAElement

: winstanceRefs
TimingDesoiotion EwertFunction | TTTRRRY . ;3‘: aatpPrototypew

Tinmimg:Everf {::]7 +function FurciionModeling.:

FuncfionProfofyos

+ isStateChange: Boolean = true

0.1

Cowrband
+functionType)

watpTypexn
FuncfionModeling.:
Funcdion Tyge

+ isElementany;: Boolean

EwentFunctionFlowPart EvertFunctionCliert Server Port

+ eventkind: EwentFunctionClientSenverPotkind

ocinstanlceRef» winstanceRefs
; !
+porty £ + :
i \JU'F port\.uﬂ wenumerations
FurchionFort FurchionPort EwertFunctionCliert Server Port Kind
Functiontodeling:: FunctionModeling::
Furction FlowPort FunctionCliert Server Part &num
+ sentRequest:
+ direction: EADRirectionkind + clientServerType: ClientSenarkind + receivedResponse:
+ receivedRequest:
+ =zentResponse:

Figure 26. The events for EAST-ADL functional modeling.

17.2 Element Descriptions

17.2.1 EventFunction (from Events)

Generalizations

e Event (from Timing)
Description

An event of a Function refers to the triggering of the Function, i.e., when the input data is
consumed, data transformation is performed on that input data by the function, and output data is
produced. It is used in conjunction with FunctionTrigger to define a time-driven triggering for a
function. In this case the FunctionTrigger points to the EventFunction of the function and defines a
triggerPolicy set to TIME. The timing constraint associated to the EventFunction provides
information about the period.

Compare categories of AUTOSAR runnables:

la triggering only on start and finish (this type of event)

©2008-2010 The ATESST2 Consortium 137 (227)

EAST-ADL Domain Model Specification version 2.1

1b triggering allowed anytime during the execution (events on ports, see EventFunctionFlowPort).
Attributes

No additional attributes

Associations

o functionType : FunctionType [0..1]
The event is valid for all occurences of this function.

Dependencies

e function : FunctionPrototype [0..1]
«instanceRef»

Constraints
[1] An EventFunction either identifies a FunctionType or a FunctionPrototype as its target function.
Semantics

The EventFunction refers to the triggering event of a referenced functionType or function
(prototype). Triggering is the time when the function consumes data.

17.2.2 EventFunctionClientServerPort (from Events)

Generalizations

o Event (from Timing)
Description

Event that refers to the triggering of the Function at a client/server port, i.e., when the input data is
sent / received, or when the output data is produced / received.

Attributes

e eventKind : EventFunctionClientServerPortKind [1]
Associations

No additional associations
Dependencies

e port : FunctionClientServerPort [1]
«instanceRef»

Constraints

[1] eventKind is sentRequest or receivedResponse for a FunctionClientServerPort of type client.
Rationale: Only these values make sense for client ports.

[2] eventKind is receivedRequest or sentResponse for a FunctionClientServerPort of type server.
Rationale: Only these values make sense for server ports.

Semantics

EventFunctionClientServerPort refers to the time when data is sent or received at the
ClientServerPort.

17.2.3 EventFunctionClientServerPortKind (from Events) «enumeration»

Generalizations

©2008-2010 The ATESST2 Consortium 138 (227)

EAST-ADL Domain Model Specification version 2.1

None

Description

Possible values of eventKind.
Enumeration Literals

e receivedRequest
Request arrived at server.

e receivedResponse
Response arrived at client.

e sentRequest
Request sent from client.

e sentResponse
Response sent from server.

Associations

No additional associations
Constraints

No additional constraints
Semantics

See each literal.

17.2.4 EventFunctionFlowPort (from Events)

Generalizations

o Event (from Timing)
Description

Event that refers to the triggering of the Function at a flow port, i.e., when data is sent or received.
Attributes

No additional attributes

Associations

No additional associations

Dependencies

e port : FunctionFlowPort [1]
«instanceRef»

Constraints
No additional constraints
Semantics

EventFunctionFlowPort refers to the time when data is sent or received at the FunctionFlowPort.

©2008-2010 The ATESST2 Consortium 139 (227)

EAST-ADL Domain Model Specification version 2.1

Part VII Dependability

©2008-2010 The ATESST2 Consortium 140 (227)

EAST-ADL Domain Model Specification version 2.1

18 Dependability

18.1 Overview

Dependability of a system is the system’s ability to ensure service failures are at a level of
frequency and severity that is acceptable. Dependability includes several aspects, namely
Availability, Reliability, Safety, Integrity and Maintainability. The Dependability package includes
support for defining and classifying safety requirements through preliminary Hazard Analysis Risk
Assessment, tracing and categorizing safety requirements according to role in safety life-cycle,
formalizing safety requirements using safety constraints, formalizing and assessing fault
propagation through error models, and organizing evidence of safety in a Safety Case.

The support for safety is designed to support the automotive standard for Functional Safety,

ISO/DIS 26262.

fraceadle Specification
Ferrorblodel Type

watpTypen
Errortdodel ::Error Model Type

+ generichezcription: String = A

fraceahle Specification

watpTypen

EAFachizyeahleElement

Dfafppes EADfaiyoe +eabatatype

Traceahle Specifieation

SafetyConstraints::
Quantitati ve SafetyConstraint

+ failureRate: Float
+ repairRate: Float

1.7 +constrainedF aultF ailure

fraceahle Specifcation

SafetyConstraints::

FaultFailure FfaultF ailure

1.7 +eonstrainedF aultF ailure

fraceahle Specification

SafetyConstraints::

SafetyConstraint “+zatetyConstraint

+ asilValue: ASILKind

Treceghle Specifieation
SafetyCase:: SafetyCase

+zafetyCase
+ context: String

+ stage: LifeeycleStagekind

+zafetyCase 0.7 u

+quantiti ative 5 afetyConstraint

SafetyRequirement::
Functional SafetyConcept

SafetyRequirement::
Techrical SafetyConcept

SafetyRequiremeant:: SafetyGoal

Conbext +item tem
o Dependzhility (4 -
0.4 0.1 =1+ developmentCategon: DevelopmentCate gonykind
1.7 +iterm +itermn 1.7
+HeatureFlaw Teceahle Specifcation
-
8.1 0.1 FeatureFlav
q.® +malfunction
0.1
+hazard T e s P
- @oeable Specifcation
oA Hazard
+hazard 1.7
» Traceanle Specification
v HazardaousEwvert
+ classificationfAssumptions: String [0..1]
+hazardousEwent + controllability: ControllabilityClasskind
+ exposure; ExposureClasskind
0.1 + hazardClassification: ASILKind
+ severity: SeverityClassKind
+derivedFrom 1.7
0.1
+functionalSatetyConcept +technicalSafetyConcept +zafetyoal
ReguimmentsContainer ReguiremertsCortzimer EAElement

+ hazardClassification: ASILKind
+ =afeStates: String [0..1]

Figure 27. Diagram for organization of dependability related information.

©2008-2010 The ATESST2 Consortium

141 (227)

EAST-ADL Domain Model Specification version 2.1

Fegture

EAPzchageahleblenant VehicleFeatureModeling:: . I«enur:decr::ion» find
=velop me garyhin

fem +yehicleFeature wehicleFeature

+ develapmentCategony: DewelopmentCategankind 1|+ isCustomerVisible: Boolean STy _
+ isDesignWariabilityRationale: Boolean + newtemDevelopment: String
+ izRemowed: Boalean + maodificationOfExistingltem: String

+item 1.7 1.7
+item

«enumerations
SafetyConstraints::
ASILKind

Traceahle Specification R t Specificati et
“ +nonFulfilledRequirement guirement Specification Ciyise Enum
FeatureFlaw Requirerments::Requirement 4+ ABIL_A:

+ ASIL_B:
+ formalism: String [0..1] + ASIL_C:

+

+

+ url: Sting [0..1] ASIL_D:
Qi

=

1.7
+malfunction

+requirement 1.7

cenumerations
Traceable Specifeation EAElement SeverityClasskind

Hazard SafetyRequirement:: SafetyGoal

+ hazardClassification: ASILKind Gl
+ =afeStates: Sting [0..1]

+hazard 1.7

+derivedFrom | 1.

+tmode _
Fraceable Specification B N «enumerations
+zafebodes CortrollabilityClass Kind

EAElement
Eehavior::Mode co:

HazardousEwvent

claszificationfAszumptions: String [0..1]
contrallability: ControllabilityClasskind =
exposure: ExposureClasskind +operatinghlode + condition: String *

hazardClassification: ASILKind @ =
sewerity: SeverityClasskind +

+ o+ o+ o+ o+

+externaleasures wenumerations
=

ExposureClassHind

S .) A
+traffic = +environment 1.7 +operationalSituationlseCase

: = Relationzhin
Traceahle Specification Trzceable Specification Reguiremenis::

Requirements:: UseCases::UseCase ReguirenmenisRelafionshio
Operational Situstion

Figure 28. Diagram for Dependability.

18.2 Element Descriptions

18.2.1 ControllabilityClassKind (from Dependability) «xenumeration»

Generalizations
None
Description

The ControllabilityClassKind is an enumeration metaclass with enumeration literals indicating
controllability attributes CO, C1, C2 or C3 in accordance with 1ISO26262.

Enumeration Literals

e CO
Controllable in general.

e C1
Simply controllable.

e C2
Normally controllable.

©2008-2010 The ATESST2 Consortium 142 (227)

EAST-ADL Domain Model Specification version 2.1

e C3
Difficult to control or uncontrollable.

Associations

No additional associations
Constraints

No additional constraints
Semantics

The semantics are defined at each enumeration literal and fully defined in the 1SO26262 standard.

18.2.2 Dependability (from Dependability)

Generalizations

e Context (from Elements)
Description

The collection of dependability related information, this includes safety requirements, safety case,
safety constraints, and error modeling. This collection can be done across the EAST-ADL
abstraction levels.

Attributes
No additional attributes
Associations

¢ technicalSafetyConcept : TechnicalSafetyConcept [*]
o eaDatatype : EADatatype [*]
Datatypes defined in this context.

safetyCase : SafetyCase [*]
gquantitiativeSafetyConstraint : QuantitativeSafetyConstraint [*]
hazard : Hazard [*]

functionalSafetyConcept : FunctionalSafetyConcept [*]
faultFailure : FaultFailure [*]

errorModelType : ErrorModelType [*]

featureFlaw : FeatureFlaw [*]

item : Item [*]

safetyGoal : SafetyGoal [*]

safetyConstraint : SafetyConstraint [*]
hazardousEvent : HazardousEvent [*]

Constraints

No additional constraints

Semantics

18.2.3 DevelopmentCategoryKind (from Dependability) «enumeration»

Generalizations

None

©2008-2010 The ATESST2 Consortium 143 (227)

EAST-ADL Domain Model Specification version 2.1

Description

DevelopmentCategoryKind is an enumeration with enumeration literals indicating whether the item
is a modification of an existing item or if it is a new development.

Enumeration Literals

¢ modificationOfExistingltem
In case of a maodification the relevant lifecycle sub-phases and activities shall be
determined.

¢ newltemDevelopment
In case of a new development, the entire lifecycle shall be passed through.

Associations

No additional associations
Constraints

No additional constraints
Semantics

The semantics are defined at each enumeration literal and fully defined in the 1S026262 standard.

18.2.4 ExposureClassKind (from Dependability) «enumeration»

Generalizations
None
Description

The ExposureClassKind is an enumeration metaclass with enumeration literals indicating the
probability attributes E1, E2, E3 or E4 in accordance with 1ISO26262.

Enumeration Literals

e EI1
Rare events. Situations that occur less often than once a year for the great majority of
drivers
o E2
Sometimes. Situations that occur a few times a year for the great majority of drivers
e E3
Quite often. Situations that occur once a month or more often for an average driver
e E4

Often. All situations that occur during almost every drive on average
Associations
No additional associations
Constraints
No additional constraints
Semantics

The semantics are defined at each enumeration literal and fully defined in the 1ISO26262 standard.

©2008-2010 The ATESST2 Consortium 144 (227)

EAST-ADL Domain Model Specification version 2.1

18.2.5 FeatureFlaw (from Dependability)

Generalizations

e TraceableSpecification (from Elements)
Description

FeatureFlaw denotes an abstract failure of a set of items, i.e. an inability to fulfill one or several of
its requirements.

Attributes
No additional attributes
Associations

¢ nonFulfilledRequirement : Requirement [*]
Identifies the requirements that are not fulfilled.

o item: Item[1..%]
The item for which the FeatureFlaw is identified

Constraints
No additional constraints
Semantics

FeatureFlaw represents functional anomalies derivable from each foreseeable source.
nonFulfilledRequirements identifies those requirements that correspond to the FeatureFlaw.

18.2.6 Hazard (from Dependability)

Generalizations

e TraceableSpecification (from Elements)
Description

The Hazard metaclass represents a condition or state in the system that may contribute to
accidents. The Hazard is caused by malfunctioning behavior of E/E safety-related systems
including interaction of these systems.

The Hazard does not address hazards such as electric shock, fire, smoke, heat, radiation, toxicity,
flammability, reactivity, corrosion, release of energy, and similar hazards unless directly caused by
malfunctioning behavior of safety related electrical/electronic systems.

Attributes
No additional attributes
Associations

e item: Item [1..%]
The item for which the Hazard is identified

e malfunction : FeatureFlaw [1..*]
The deviation of the item's operation compared to specified behavior.

Constraints
No additional constraints

Semantics

©2008-2010 The ATESST2 Consortium 145 (227)

EAST-ADL Domain Model Specification version 2.1

The Hazard element represents a condition or state in the system that may contribute to
accidents. The associated malfunction identifies the FeatureFlaw that corresponds to the Hazard.

18.2.7

HazardousEvent (from Dependability)

Generalizations

TraceableSpecification (from Elements)

Description

The HazardousEvent metaclass represents a combination of a Hazard and a specific situation, the
latter being characterized by operating mode and operational situation in terms of a particular use
case, environment and traffic.

Attributes

classificationAssumptions : String [0..1]
The classificationAssumptions attribute denotes assumptions concerning the classification
of the Hazard.

controllability : ControllabilityClassKind [1]
The controllability by the driver or other traffic participants defined by the enumeration CO,
C1, C2 or C3 in accordance with 1SO26262.

exposure : ExposureClassKind [1]
The probability of exposure of the operational situations defined by the probability attributes
E1l, E2, E3 or E4 in accordance with 1ISO26262.

hazardClassification : ASILKind [1]
The ASIL-Level shall be determined for each hazardous event using the estimation
parameters in accordance with 1ISO26262.

severity : SeverityClassKind [1]
The severity of potential harm defined by the severity attributes S0, S1, S2 or S3 in
accordance with 1ISO26262.

Associations

operatingMode : Mode [*]
OperatingMode denotes the Operating mode of the item.

externalMeasures : RequirementsRelationship [*]

traffic : OperationalSituation [*]

A definition of the traffic situation in terms of adjacent vehicles, pedestrians and other
dynamic aspects. Represents the external and dynamic aspects of the vehicle operating
situation .

environment : OperationalSituation [*]
A definition of the road environment in terms of road conditions, lanes, geometry, etc.
Represents the external and static aspects of the vehicle operating situation .

operationalSituationUseCase : UseCase [1..*]
Operational situation with respect to the activities of actors, typically the driver.

hazard : Hazard [1..%]
The Hazard that together with the operational situation constitutes the HazardousEvent.

Constraints

No additional constraints

©2008-2010 The ATESST2 Consortium 146 (227)

EAST-ADL Domain Model Specification version 2.1

Semantics

The HazardousEvent denotes a combination of a Hazard and an operational situation. The
controllability and severity attributes shall be consistent with the operational situation and
operational scenario, and the Exposure shall reflect the likelihood of the operational situation and
scenario.

18.2.8 Item (from Dependability)

Generalizations

o EAPackageableElement (from Elements)
Description

The Item entity identifies the scope of safety information and the safety assessment, i.e. the part
of the system onto which the 1SO26262 related information applies. Safety analyses are carried
out on the basis of an item definition and the safety concepts are derived from it.

Attributes

¢ developmentCategory : DevelopmentCategoryKind [1]
The Item entity identifies the scope of safety information and the safety assessment, i.e.
the part of the system onto which the 1SO26262 related information applies. Safety
analyses are carried out on the basis of an item definition and the safety concepts are
derived from it.

Associations

e vehicleFeature : VehicleFeature [1..*]
Constraints

No additional constraints
Semantics

Item represents the scope of safety information and the safety assessment through its reference
to one or several Features.

18.2.9 SeverityClassKind (from Dependability) «enumeration»

Generalizations
None
Description

The SeverityClassKind is an enumeration metaclass with enumeration literals indicating the
severity attributes SO, S1, S2 or S3 in accordance with 1ISO26262.

Enumeration Literals

e SO
No injuries.
e S1
Light and moderate injuries.
o S2
Severe and life-threatening injuries (survival probable).
e S3

©2008-2010 The ATESST2 Consortium 147 (227)

EAST-ADL Domain Model Specification version 2.1

Life-threatening injuries (survival uncertain), fatal injuries.
Associations
No additional associations
Constraints
No additional constraints
Semantics

The semantics are defined at each enumeration literal and fully defined in the 1SO26262 standard.

©2008-2010 The ATESST2 Consortium 148 (227)

EAST-ADL Domain Model Specification version 2.1

19 ErrorModel

19.1 Overview

The EAST-ADL sub-package for error modeling provides support for safety engineering by
representing possible, incorrect behaviors of a system in its operation (e.g., component errors and
their propagations).

Abnormal behaviors of architectural elements as well as their instantiations in a particular product
context can be represented. This forms a basis for safety analysis through external techniques
and tools. Through the integration with other language constructs, definitions of error behaviors
and hazards can be traced to the specifications of safety requirements, and further to the
subsequent functional and non-functional requirements on error handing and hazard mitigations
as well as to the necessary V&V efforts.

Error behaviors are treated as a separated view, orthogonal to the nominal architecture model.
This separation of concern in modeling is considered necessary in order to avoid the undesired
effects of error modeling, such as the risk of mixing nominal and erroneous behavior in regards to
the comprehension, reuse, and system synthesis (e.g., code generation).

Fraceafle Specification

watp Typew
Error odel Type

+ generichescription: String = MA

’1 ’1 ’1 +otuner .

1

+arrorBehaviorbescription | 1.7

= failure

EAElemert
ErrorBehawvior

wenumeration:
Error Behawvior Kind

FaultFailuePort
Failure JutPort

+externalF ailure

1= + failureLaogic: String [0..1]
.) e Enum
+ type: ErmorBehawviorkind + HIF HOPS:
+ ALTARICA:
= +externalF ault . MDL-
+ OTHER:

FaultFailumePort | +extarmalF ault
FaultinFort

=

+internalF ault

Aol
Internal Fault Prototype

+internalF ault

x

= +processFault

Arom2ly| +processFault
ProcessFault Prototype

Figure 29. Diagram for ErrorBehavior.

©2008-2010 The ATESST2 Consortium 149 (227)

EAST-ADL Domain Model Specification version 2.1

+part

Fraceahle Specification

o . EAElement
watpTypes 1
satpPrototypes
ErrorModel T
rrortodelype ype Errortodel Prototype
+ genericDescription: String = NA o
1 4isOfTypen
1 1 '
‘} " . 01 0 0‘ sinstanceRefs
+taultFailureConnector | = = +targety [+functionTarget y/*
+extemalF aull Hailure ¢ ¢
EAElement
EailureDutPort Cantext EAElement
FaultinPaort FaultFailurePropagationLink ratpTypes catpFrototypes
- - FunctionModsling:: FunctionModeling..
- =
immediateFropagation: Boolean = frug o e e
o o + isElementary: Boolean
sinstanceRafs winstanesRafs
+processFault ; . :
: H sinstancaRefs
+iromPort /1 +toPort 4/ 1 ;
FrocessFaultPrototype
«atpPrototypes +huTarget
FaultFailurePort - :
+haTargat
i T Context
: Allocation Tamet
ainstanceRefs i " +pant
] instanceRe: |n5(ar\;ceRef catpTypes pa EAElenent
+intemalF ault +funetionTarget b T arget Hardvarehodeling:: hE «atpFrototypes
EAElement vl e e B AL HardwareModelin
Internal FaultPrototype s EAElement 9
A type Hardwaralomponent Protolype
Fufracz.?mmmem . eatpStructureElements targed
! & HardwereModeling: HardwarePin 1 wisOfTypes args
FunctionPorf "
+ direction: EADirectionkind [0..1]
+ impedance: Float[0..1] Identifiable idenfifiable
+ isGround: Boslean [1.1]
+ power. Float [0.1] + category: String [0.1]
+ voltage: Float [0.1] + shotMame: Identifier
+ uuid: String
EAElenent Tracesble Specification
+
vatpFrototypes g watpTypen
Anomaly Datatypes:EADatalype
isDfTypes 1
+ genericDescription: Sling

Figure 30. The EAST-ADL metaclasses for defining the error model structure.

19.2 Element Descriptions

19.2.1 Anomaly (from ErrorModel) {abstract} «atpPrototype»

Generalizations

o EAElement (from Elements)
Description

The Anomaly metaclass represents a Fault that may occur internally in an ErrorModel or be
propagated to it, or a failure that is propagated out of an Error Model. The anomaly may represent
different faults or failures depending on the range of its EADatatype. Typically, the EADatatype is
an Enumeration, for example:

BrakeAnomaly:

- BrakePressureTooLow

Semantics="brake pressure is below 20% of requested value"

- Omission

Semantics="brake pressure is below 10% of maximal brake pressure”
- Comission

Semantics="brake pressure exceeds requested value with more than 10% of maximal brake
pressure"

Semantics may also be a more formal expression defining in the type of the nominal datatype what
value range is considered a fault. This depends on the user and tooling available.

Attributes

e genericDescription : String [1]
A description of the Anomaly

©2008-2010 The ATESST2 Consortium 150 (227)

EAST-ADL Domain Model Specification version 2.1

Associations

o type : EADatatype [1]
«isOfType»

The declaration of port type.
Constraints
No additional constraints
Semantics

An anomaly refers to a condition that deviates from expectations based on requirements
specifications, design documents, user documents, standards, etc., or from someone's
perceptions or experiences (1ISO26262). The set of available faults or failures represented by the
Anomaly is defined by its EADatatype, typically an enumeration type like {omission, commission}.
It is an abstract class further specialized with metaclasses for different types of fault/failure.

19.2.2 ErrorBehavior (from ErrorModel)

Generalizations

o EAElement (from Elements)
Description

ErrorBehavior represents the descriptions of failure logics or semantics that the target element
identified by the ErrorModelType exhibits. Typically the target is a system, a function, a software
component, or a hardware device.

Each ErrorBehavior description relates the occurrences of internal faults and incoming external
faults to failures. The faults and failures that the errorBehavior propagates to and from the target
element are declared through the ports of the error model.

Attributes

¢ failureLogic : String [0..1]
The specification of error behavior based on an external formalism or the path to the file
containing the external specification.

e type : ErrorBehaviorKind [1]
The type of formalism applied for the error behavior description.

Associations

e internalFault : InternalFaultPrototype [*]
internalFaults that influence the errorBehavior

e processFault : ProcessFaultPrototype [*]
processFaults that may affect the errorBehavior

e externalFailure : FailureOutPort [1..*]
Failures that may result from the ErrorBehavior

e externalFault : FaultinPort [*]
external(incoming) faults that influence the errorBehavior.

e owner : ErrorModelType [1]
the container ErrorModelType for the error behavior description.

Constraints

No additional constraints

©2008-2010 The ATESST2 Consortium 151 (227)

EAST-ADL Domain Model Specification version 2.1

Semantics

ErrorBehavior defines the error propagation logic of its containing ErrorModelType.

The ErrorBehavior description represents the error propagations from internal faults or incoming
faults to external failures. Faults are identified by the internalFault and externalFault associations
respectively. The propagated failures are identified by the externalFailure association.

The ErrorBehavior is defined in the failureLogic string, either directly or as a url referencing an
external specification.

The failureLogic can be based on different formalisms, depending on the analysis techniques and
tools available. This is indicated by its type:ErrorBehaviorKind attribute. The failureLogic attribute
contains the actual failure propagation logic.

19.2.3 ErrorBehaviorKind (from ErrorModel) «enumeration»

Generalizations
None
Description

The ErrorBehaviorKind metaclass represents an enumeration of literals describing various types of
formalisms used for specifying error behavior.

Enumeration Literals

e AADL

A specification of error behavior according to the external formalism AADL.
e ALTARICA

A specification of error behavior according to the external formalism ALTARICA.
e HIP_HOPS

A specification of error behavior according to the external formalism HiP-HOPS.
e OTHER

A specification of error behavior according to other user defined formalism.
Associations
No additional associations
Constraints
No additional constraints
Semantics

ErrorBehaviorKind represents different formalisms for ErrorBehavior. The semantics is defined at
each enumeration literal.

19.2.4 ErrorModelPrototype (from ErrorModel) «atpPrototype»

Generalizations

e EAElement (from Elements)
Description

©2008-2010 The ATESST2 Consortium 152 (227)

EAST-ADL Domain Model Specification version 2.1

The ErrorModelPrototype is used to define hierarchical error models allowing additional detail or
structure to the error model of a particular target. A hierarchal structure can also be defined when
several ErrorModels are integrated to a larger ErrorModel representing a system integrated from
several targets.

Typically the target is a system/subsystem, a function, a software component, or a hardware
device.

Attributes
No additional attributes
Associations

e type : ErrorModelType [1]
«isOfType»

The ErrorModelType that types the ErrorModelPrototype.

e target : Identifiable [1]
The target element (i.e., a system, a function, a component, or hardware device) owning
the anomalies.

ARElement can also be the target or ErrorModelType.
Dependencies

e functionTarget : FunctionPrototype [*]
«instanceRef»

¢ hwTarget : HardwareComponentPrototype [*]
«instanceRef»

Constraints
No additional constraints
Semantics

An ErrorModelPrototype represents an occurrence of the ErrorModelType that types it.

19.2.5 ErrorModelType (from ErrorModel) «atpType»

Generalizations

e TraceableSpecification (from Elements)
Description

ErrorModelType and ErrorModelPrototype support the hierarchical composition of error models
based on the type-prototype pattern also adopted for the nominal architecture composition. The
purpose of the error models is to represent information relating to the anomalies of a nominal
model element.

An ErrorModelType represents the internal faults and fault propagations of the nominal element
that it targets.

Typically the target is a system/subsystem, a function, a software component, or a hardware
device.

ErrorModelType inherits the abstract metaclass TraceableSpecification, allowing the
ErrorModelType to be referenced from its design context in a similar way as requirements, test
cases and other specifications.

Attributes

©2008-2010 The ATESST2 Consortium 153 (227)

EAST-ADL Domain Model Specification version 2.1

e genericDescription : String = NA [1]
Associations

e target: FunctionType [*]
The nominal FunctionType whose ErrorModel is defined by the ErrorModelType

¢ hwTarget : HardwareComponentType [*]
¢ internalFault : InternalFaultPrototype [*]
An internal fault that the ErrorModelType may propagate or mask

o faultFailureConnector : FaultFailurePropagationLink [*]
The contained links for internal propagations of faults/failures between the subordinate
error models.

e processFault : ProcessFaultPrototype [*]
A processFault that affects the ErrorModelType. Process faults cannot be masked, and
propagate to all defined externalFailures.

e part: ErrorModelPrototype [*]
The contained error models forming a hierarchy.

o failure : FailureOutPort [*]
A failureOutPort represent a propagated Failure

e externalFault : FaultinPort [*]
An external fault that the ErrorModelType may propagate or mask

e errorBehaviorDescription : ErrorBehavior [1..*]
The description of failure logic of the target element.

Constraints
An ErrorModelType without part shall have one errorBehaviorDescription
Semantics

The ErrorModelType represents a specification of the faults and fault propagations of its target
element.

Both types and prototypes may be targets, and the following cases are relevant:
- One nominal type:

The ErrorModelType represents the identified nominal type wherever this nominal type is
instantiated.

- Several nominal types:

The ErrorModelType represents the identified nominal types individually, i.e. the same error model
applies to all nominal types and is reused.

- One nominal prototype:

The ErrorModelType represents the identified nominal prototype whenever its context, i.e. its top-
level composition is instantiated.

- Several nominal prototypes with instanceref:

The ErrorModelType represents the identified set of nominal prototypes (together) whenever their
context, i.e. their top-level compaosition, is instantiated.

The fault propagation of an errorModelType is defined by its contained parts, the
ErrorModelPrototypes and their connections. In case it contains both parts and an
errorBehaviorDescription, the errorBehaviorDescription shall be consistent with the parts.

©2008-2010 The ATESST2 Consortium 154 (227)

EAST-ADL Domain Model Specification version 2.1

FaultFailurePropagationLinks define valid propagation paths in the ErrorModelType. In case the
contained FaultinPorts and FailureOutPorts reference nominal ports, the connectivity of the
nominal model may serve as a pattern for connecting ports in the ErrorModelType.

The ErrorModelType contains internalFaults and externalFaults, representing faults that are either
propagated to externalFailures or masked, according to the definition of its fault propagation.

A processFault represents a flaw introduced during design, and may lead to any of the failures
represented by the ErrorModelType. A processFault therefore has a direct propagation to all
externalFailures and cannot be masked.

19.2.6 FailureOutPort (from ErrorModel)

Generalizations

o FaultFailurePort (from ErrorModel)
Description

The FailureOutPort represents a propagation point for failures that propagate out from the
containing ErrorModelType.The EADatatype of the FailureOutPort defines the range of valid
failures.

Attributes

No additional attributes

Associations

No additional associations

Constraints

[1] The direction of the nominal port must be out.
Semantics

The value range of a FailureOutPort represents failures that can propagate to FaultinPorts in other
ErrorModels. The value range is defined by the FailureOutPort’s EADatatype.

If nominal Ports HWTargets or FunctionTargets are referenced, the failures of the FailureOutPort
correspond to data on these nominal ports.

19.2.7 FaultFailurePort (from ErrorModel) {abstract} «atpPrototype»

Generalizations

e Anomaly (from ErrorModel)
Description

Abstract port for Faults and Failures.
Attributes

No additional attributes
Associations

No additional associations
Dependencies

e functionTarget : FunctionPort [*]
«instanceRef»

©2008-2010 The ATESST2 Consortium 155 (227)

EAST-ADL Domain Model Specification version 2.1

e hwTarget : HardwarePin [*]
«instanceRef»

Constraints
No additional constraints

Semantics

19.2.8 FaultFailurePropagationLink (from ErrorModel)

Generalizations

¢ EAElement (from Elements)
Description

The FaultFailurePropagationLink metaclass represents the links for the propagations of
faults/failures across system elements. In patrticular, it defines that one error model provides the
faults/failures that another error model receives.

A fault/failure link can only be applied to compatible ports, either for fault/failure delegation within
an error model or for fault/failure transmission across two error models. A
FaultFailurePropagationLink can only connect fault/failure ports that have compatible types.

Attributes

e immediatePropagation : Boolean = true [1]
Associations

No additional associations
Dependencies

o fromPort : FaultFailurePort [1]
«instanceRef»

o toPort : FaultFailurePort [1]
«instanceRef»

Constraints
[1] Only compatible fromPort-toPort pairs may be connected.

[2] Two fault/failure ports are compatible if the EADatatype of the fromPort represents a subset of
the Fault/Failure set represented by the toPort’s EADatatype.

Semantics

The FaultFailurePropagationLink defines a Failure propagation path, from the fromPort on one
error model to the toPort of another error model.

19.2.9 FaultinPort (from ErrorModel)

Generalizations

o FaultFailurePort (from ErrorModel)
Description

The FaultinPort represents a propagation point for faults that propagate to the containing
ErrorModelType. The EADatatype of the FaultinPort defines the range of valid failures.

©2008-2010 The ATESST2 Consortium 156 (227)

EAST-ADL Domain Model Specification version 2.1

Attributes

No additional attributes

Associations

No additional associations

Constraints

[1] The direction of the nominal port must be in.
Semantics

The value range of a FaultinPort represents faults propagated from a FailureOutPort in another
ErrorModel. The value range is defined by the FaultinPort’'s EADatatype.

If nominal Ports HWTarget or FunctionTarget are referenced, the faults on the FaultinPort.

19.2.10 InternalFaultPrototype (from ErrorModel)

Generalizations

¢ Anomaly (from ErrorModel)
Description

The InternalFault metaclass represents the particular internal conditions of the target
component/system that are of particular concern for its fault/failure definition.

Attributes

No additional attributes
Associations

No additional associations
Constraints

No additional constraints
Semantics

The system anomaly represented by an InternalFault, which when activated, can cause errors and
failures of the target element.

19.2.11 ProcessFaultPrototype (from ErrorModel)

Generalizations

e Anomaly (from ErrorModel)
Description

The ProcessFaultPrototype metaclass represents the anomalies that the target component/system
can have due to design or implementation flaws (e.g., incorrect requirements, buffer size
configuration, scheduling, etc.).

Attributes
No additional attributes
Associations

No additional associations

©2008-2010 The ATESST2 Consortium 157 (227)

EAST-ADL Domain Model Specification version 2.1

Constraints
No additional constraints

Semantics

©2008-2010 The ATESST2 Consortium 158 (227)

EAST-ADL Domain Model Specification version 2.1

20 SafetyConstraints

20.1 Overview

EAElement

watpPrototypes
Errorade!: A ramaly

- " + generichescription: String
Traceahle Specifcation
Cluzntitative SafetyConstraint +an0ma|y’f?\ 0.1

! wisOfTypen
+ failureRate: Float winstanceRaty \typ% 1
+ repairRate: Float +constrainedF aultF ailure H

Traceahle Specification Traceghle Speciffeation

i

FaultFailure watpTypes
Dafafypes EADIfFype

+constrainedF aultF ailure

Freceahls Soecification

1.7
SafetyConstraint o q
+hype
+ asilvalue: ASILKind

+faultF ailureValue |1

wisOfTypen
EAE ement
watpPrototypes
Datstypes::

EADatatype Prototype |

Figure 31. Diagram for SafetyConstraints.

20.2 Element Descriptions

20.2.1 ASILKind (from SafetyConstraints) «xenumeration»

Generalizations
None
Description

The ASILKind is an enumeration metaclass with enumeration literals indicating the level of safety
integrity in accordance with 1ISO26262.

Enumeration Literals

e ASIL_A

ASIL A, Lowest Safety Integrity Level.
e ASIL_ B

ASIL B, second lowest Safety Integrity Level.
e ASIL C

ASIL C, second highest Safety Integrity Level.
e ASIL D

ASIL D, Highest Safety Integrity Level.
e QM

©2008-2010 The ATESST2 Consortium 159 (227)

EAST-ADL Domain Model Specification version 2.1

Quality Management only, no requirement according to ISO 26262.
Associations
No additional associations
Constraints
No additional constraints
Semantics
The semantics is defined at each enumeration literal and fully defined in the 1ISO26262 standard.

20.2.2 FaultFailure (from SafetyConstraints)

Generalizations

¢ TraceableSpecification (from Elements)
Description

The FaultFailure represents a certain fault or failure on its referenced Anomaly. The
faultFailureValue specifies the value of the Anomaly that the FaultFailure corresponds to, i.e. one
of the possible values of the Anomaly.

Attributes
No additional attributes
Associations

¢ faultFailureValue : EADatatypePrototype [1]
The faultFailureValue defines the specific value among the possible faults or failures that
the FaultFailure represents.

Dependencies

e anomaly : Anomaly [0..1]
«instanceRef»

Constraints
No additional constraints
Semantics

A FaultFailure is defined as a certain value, faultFailureValue, occurring at the referenced
Anomaly.

20.2.3 QuantitativeSafetyConstraint (from SafetyConstraints)

Generalizations

e TraceableSpecification (from Elements)
Description

The QuantitativeSafetyConstraint metaclass represents the quantitative integrity constraints on a
fault or failure. Thus, the system has the same or better performance with respect to the
constrained fault or failure, and depending on the role this is either a requirement or a property.

Attributes

e failureRate : Float [1]

©2008-2010 The ATESST2 Consortium 160 (227)

EAST-ADL Domain Model Specification version 2.1

failureRate denotes the number of failures per unit time, i.e. the density of probability of
failure divided by probability of survival for a hardware element (1ISO26262 definition). For
exponential failure distributions it is often denoted by lambda.

repairRate : Float [1]
repairRate denotes the number of repairs per unit time. For exponential repair distributions
it is often denoted by mu.

Associations

constrainedFaultFailure : FaultFailure [1..*]

A QuantitativeSafetyConstraint defines quantitative bounds on the constrainedFaultFailure
in terms of the failure and repair rates, failureRate and repairRate. The rates are
exponentially distributed (user defined attributes may be used to specify alternative
distributions and additional quantitative parameters).

Constraints

No additional constraints

Semantics

A QuantitativeSafetyConstraint provides information about the probabilistic estimates of target
faults/failures, further specified by the failureRate and repairRate attribute.

20.2.4

SafetyConstraint (from SafetyConstraints)

Generalizations

TraceableSpecification (from Elements)

Description

The SafetyConstraint metaclass represents the qualitative integrity constraints on a fault or failure.
Thus, the system has the same or better performance with respect to the constrained fault or
failure, and depending on the role this is either a requirement or a property.

Attributes

asilValue : ASILKind [1]
The ASIL level of the target fault or failure.

Associations

constrainedFaultFailure : FaultFailure [1..*]
The constrained fault or failure.

Constraints

No additional constraints

Semantics

A SafetyConstraint defines qualitative bounds on the constrainedFaultFailure in terms of safety
integrity level, asilValue.

Depending on role, the SafetyConstraint may define a required or an actual safety integrity level.

©2008-2010 The ATESST2 Consortium 161 (227)

EAST-ADL Domain Model Specification version 2.1

21 SafetyRequirement

21.1 Overview

ReguwirementsContainer

Technical SafetyConcept F lordered}
Reguieament Speciffcation Ohect +mode EAElement
+technical 5 afetyRequirement . - . X
Requirements:: Requirement = Behzwvior::Mode
+ formalism: String [0..1] + condition: String
+ url: String [0..1]

+functionals afetyRequirement

+safeblodes =

+operatinghlode

* fardered} +requirament 1.7
ReguireamentsCortainer
Functional SafetyConcept

Fraceahle Specificalion

EAElemett +derivedFram Dependability: Hazardous Everit

SafetyGozl
ol azsificationfAszumptions: String [0..1]

controllability: Controllabilitvislasskind
exposure; Exposurellasskind
hazardClassification: ASILKind
sewerity: SewerityClasskind

+ hazardClassification: ASILKind 1.7
+ safeStates: String [0..1]

+ o+ o+ o+

Figure 32. Diagram for Safety Concepts.

21.2 Element Descriptions

21.2.1 FunctionalSafetyConcept (from SafetyRequirement)

Generalizations

¢ RequirementsContainer (from Requirements)
Description

FunctionalSafetyConcept represents the set of functional safety requirements that together fulfils a
SafetyGoal in accordance with ISO 26262.

To comply with the SafetyGoals, the FunctionalSafetyConcept specifies the basic safety
mechanisms and safety measures in the form of functional safety requirements.

Attributes
No additional attributes
Associations

e functionalSafetyRequirement : Requirement [*] {ordered}
Represents a functional safety requirement that describes the measures for complying with
the safety goals and the corresponding ASIL.

Constraints
[1] Contained functionalSafetyRequirements shall not be of type SafetyGoal.

Semantics

©2008-2010 The ATESST2 Consortium 162 (227)

EAST-ADL Domain Model Specification version 2.1

The collection of requirements in the FunctionalSafetyConcept defines the requirements
necessary to make the Item safe. The requirements are abstract and do not specify technical
details.

21.2.2 SafetyGoal (from SafetyRequirement)

Generalizations

o EAElement (from Elements)
Description

SafetyGoal represents the top-level safety requirement defined in ISO26262. Its purpose is to
define how to avoid its associated HazardousEvents, or reduce the risk associated with the
hazardous event to an acceptable level.

The SafetyGoal is defined through one or several associated requirement elements.

An ASIL shall be assigned to each SafetyGoal, to represent the integrity level at which the
SafetyGoal must be met.

Similar SafetyGoals can be combined into one SafetyGoal. If different ASILs are assigned to
similar SafetyGoals, the highest ASIL shall be assigned to the combined SafetyGoal.

For every SafetyGoal, a safe state should be defined, either textually or by referencing a specific
mode. The safe state is a system state to be maintained or to be reached when a potential source
of its hazardous event is detected.

Attributes

¢ hazardClassification : ASILKind [1]

o safeStates : String [0..1]
For every SafetyGoal, a safe state should be defined, in order to declare a system state to
be maintained or to be reached when the failure is detected and so to allow a failure
mitigation action without any violation of the associated SafetyGoal.

Associations

o safeModes : Mode [*]
The safe modes identified for the SafetyGoal

e requirement : Requirement [1..*]
o derivedFrom : HazardousEvent [1..*]
The HazardousEvent which the SafetyGoal shall address

Constraints
No additional constraints
Semantics

SafetyGoal represents a safety Goal according to 1SO26262. Requirements define the SafetyGoal,
and HazardousEvents identify the responsibility of each SafetyGoal. hazardClassification defines
the integrity classification of the SafetyGoal, and safeStates may be defined by a string or
formalized through associated Modes.

21.2.3 TechnicalSafetyConcept (from SafetyRequirement)

Generalizations

¢ RequirementsContainer (from Requirements)

©2008-2010 The ATESST2 Consortium 163 (227)

EAST-ADL Domain Model Specification version 2.1

Description

TechnicalSafetyConcept represents the set of technical safety requirements that together fulfils a
FunctionalSafetyConcept and SafetyGoal in accordance with ISO 26262.

These are derived from FunctionalSafetyConcepts i.e. TechnicalSafetyRequirements are derived
from FunctionalSafetyRequirements.

Attributes
No additional attributes
Associations

¢ technicalSafetyRequirement : Requirement [*] {ordered}
Constraints

No additional constraints
Semantics

The TechnicalSafetyConcept consists of the technical safety requirements and details the
functional safety concept considering the functional concept and the preliminary architectural
design. It corresponds to the Technical Safety Concept of ISO26262.

©2008-2010 The ATESST2 Consortium 164 (227)

EAST-ADL Domain Model Specification version 2.1

22 SafetyCase

22.1 Overview

Safety is a property of a system that is difficult to verify quantitatively since no clear measurement
method exists that can be applied during the development. Not even exhaustive testing is feasible,
as faults in electronics can have an intensity of 107-9 faults/hour and still pose an unacceptable
risk. Hence, it is only when sufficient field data have been collected from a system used in a
particular context that it can be said to be safe enough. Nonetheless, safety must be addressed
and assessed during development; restricted to qualitative reasoning about the safety of a
product. A structured engineering method is thus needed to approach this problem. One such
method is the so called safety case, which came originally from the nuclear industry.

Fraceahle Specifeation

SafetyCaze ‘.—|

+ context: String +safetyCase 0.7
+ stage: LifeeycleStagekind

¢

+warrant) .
- - +decompozedGoal +olaim | 1.
fracegble Specification
warrant o.s fraceable Specification senumerations
+goalDecompositionStrategy Clzim LifecycleStagekind
0. enum
+zupportedArgument + PreliminamySafetyCase:
+ InterimSafetyCaze:
n.= + OperationalSafetyCasze:;
+ground | 1.7 +evidence 4| /0" +evidance,| 1.7

fracegble Specification
Ground

Figure 33. Diagram for SafetyCase.

©2008-2010 The ATESST2 Consortium 165 (227)

EAST-ADL Domain Model Specification version 2.1

EAPzckageahleElement
Elements.: TraceableSpecificafion Idenfifable lderfifizhle
+zafetyR i t
satetyRequiremen + temt: String [0..1] + categone: String [0..1]
+ shofMame: |dentifier
o.F + uuwid: String
+zafetyEvidence o.F

Claim
+goallecompositionStrategy E "
roun
o Wearrant
+zupporntedfrgument +evidenoce
[
+decomposedGoal o
0.7
0.1
0.1 +justification | =
Comarent g1
Elements::Rationale
+justification +justification
+ewidance
1.

Figure 34. Diagram for Ground, Warrant, and Claim.

22.2 Element Descriptions

22.2.1 Claim (from SafetyCase)

Generalizations

e TraceableSpecification (from Elements)
Description

Claim represents a statement, the truth of which needs to be confirmed.

Claim has associations to the strategy for goal decomposition and to supported arguments. It also
holds associations to the evidences for the SafetyCase.

Attributes
No additional attributes
Associations

e goalDecompositionStrategy : Warrant [0..*]
Strategies can be used to add further detail to a goal decomposition.

e supportedArgument : Warrant [0..*]
Supported argument for the Claim.

e evidence : Ground [1..*]
An evidence provides the backing for stating that a requirement (Claim) has been meet.

©2008-2010 The ATESST2 Consortium 166 (227)

EAST-ADL Domain Model Specification version 2.1

e justification : Rationale [*]
Justification can be used wherever it is felt to be valuable to provide the rationale behind
the Claim.

o safetyRequirement : TraceableSpecification [0..*]
Safety requirements and objectives in the SystemModel.

Constraints

No additional constraints

Semantics

Goal-based development provides the claim what should be achieved.

Goal is what the argument must show to be true.

22.2.2 Ground (from SafetyCase)

Generalizations

e TraceableSpecification (from Elements)
Description

Claim is based on Grounds (evidences) - specific facts about a precise situation that clarify and
make good the Claim.

Ground represents statements that explain how the SafetyCase Ground clarifies and make good
the Claim.

Ground has associations to the entities that are the evidences in the SafetyCase.
Attributes

No additional attributes

Associations

e justification : Rationale [*]
Justification can be used wherever it is considered valuable to provide the rationale behind
the Ground.

o safetyEvidence : Identifiable [0..*]
Safety evidence in the SystemModel. May also refer to elements in the AUTOSAR model.

Constraints
No additional constraints
Semantics

Ground (evidence) is information that supports the Claim that the safety requirements and
objectives are met i.e. used as the basis of the safety argument.

Solution is evidence that the sub-goals have been met. This can be achieved by decomposing all
goal claims to a level where direct reference to evidences was considered possible.

The evidences address different aspects of the goal. It always has to be ensured that each of
them is defensible enough to confirm the underlying statement.

22.2.3 LifecycleStageKind (from SafetyCase) «enumeration»

Generalizations

©2008-2010 The ATESST2 Consortium 167 (227)

EAST-ADL Domain Model Specification version 2.1

None
Description

The SafetyCase should be initiated at the earliest possible stage in the safety program so that
hazards are identified and dealt with while the opportunities for their exclusion exist.

The LifecycleStageKind is an enumeration metaclass with enumeration literals indicating safety
case life cycle stage.

Enumeration Literals

o InterimSafetyCase
The interim safety case is situated after the first system design and tests

e OperationalSafetyCase
The operational safety case is prior to in-service use

e PreliminarySafetyCase
The preliminary safety case is started when development of the system is started.

Associations

No additional associations
Constraints

No additional constraints
Semantics

The safety case is one incremental safety case, rather than several complete new ones. The
safety case lifecycle stage has the following meanings:

- The preliminary safety case is started when development of the system is started. After this
stage discussions with the customer can commence about possible safety issues (hazards).

- The interim safety case is situated after the first system design and tests.

- The operational safety case is prior to in-service use.

22.2.4 SafetyCase (from SafetyCase)

Generalizations

e TraceableSpecification (from Elements)
Description

SafetyCase represents a safety case that communicates a clear, comprehensive and defensible
argument that a system is acceptably safe to operate in a given context.

Safety Cases are used in safety related systems, where failures can lead to catastrophic or at
least dangerous consequences.

Attributes

e context : String [1]
Description of how the SafetyCase Warrant (argument) relates to, and depends upon,
information from other viewpoints.

e stage : LifecycleStageKind [1]
Safety case life cycle stage (preliminary, interim or operational)

Associations

©2008-2010 The ATESST2 Consortium 168 (227)

EAST-ADL Domain Model Specification version 2.1

o safetyCase : SafetyCase [0..*]
Sub SafetyCase

e warrant : Warrant [*]
Argumentation of the facts to the Claim in general ways.

e ground: Ground [1..*]
Explains how the SafetyCase Ground clarifies and make good the Claim.

e claim: Claim [1..%]
A statement the truth of which needs to be confirmed.

Constraints
No additional constraints

Semantics

22.2.5 Warrant (from SafetyCase)

Generalizations

e TraceableSpecification (from Elements)
Description

Warrant represents argumentation of the facts to the Claim in general ways.

The Warrant entity has associations with the decomposed goals and with the evidences for the
SafetyCase.

Attributes
No additional attributes
Associations

e evidence : Ground [0..*]
Explains how the SafetyCase Ground clarifies and make good the Claim.

¢ decomposedGoal : Claim [0..*]
A statement the truth of which needs to be confirmed

e justification : Rationale [*]
Justification can be used wherever it is felt to be valuable to provide the rationale behind
the Warrant.

Constraints

No additional constraints

Semantics

The overall objective of an argument is to lead the evidence to the claim.

Arguments are actions of inferring a conclusion from premised propositions. An argument is
considered valid if the conclusion can be logically derived from its premises. An argument is
considered sound if it is valid and all premises are true.

A goal decomposition strategy breaks down a goal into a number of sub-goals. It is recommended
that the strategies are of specific form.

©2008-2010 The ATESST2 Consortium 169 (227)

EAST-ADL Domain Model Specification version 2.1

Part VIl Generic Constraints

©2008-2010 The ATESST2 Consortium 170 (227)

EAST-ADL Domain Model Specification version 2.1

23 GenericConstraints

23.1 Overview

The main concept in this package is GenericConstraint which denotes a property, requirement, or
a validation result for the identified element of the model. The kind of GenericConstraint is
described as one of the predefined GenericConstraintKind literals.

Cavrbext Ideriifiable: ldenrfifable GEMOEFEEND
Genaric Constraint Set . GenericConstraint Kind
+ categony: String [D..1]
+ shortMame: |dentifier SO
+ uuid: Sting + cablelength:
1 + developmentCost:
+ functionAllocationDifferentModes:
+arget - bzaurce + functionAllocationSamelade:
¥ + powerConsumption:
+ powerSupplyindependent:
+genericConstraint | 7 + piecaCost
‘ - + standard:
Traceahle Speciffeation + weight:
Generic Constraint TakeRate Constraint + other
+ genericConstraintType: GenericConstraintkind] + takeRate: Float : f.paceﬂﬂzdu;dancty.
+ genericConstraintyWalue: String fmenedundansy:

\ EAFlement

+mode =
EBehawior::Mode

+ condition: String

Figure 35. Diagram of GenericConstraint.

23.2 Element Descriptions

23.2.1 GenericConstraint (from GenericConstraints)

Generalizations

¢ TraceableSpecification (from Elements)
Description

The GenericConstraint denotes a property, requirement, or a validation result for the identified
element of the model. The kind of GenericConstraint is described as one of the
GenericConstraintKind literals.

Example: If the attribute genericConstraintType is cableLength, the genericConstraintValue could
be "5 meters" (value of a numerical datatype with unit "meters").

Attributes

e genericConstraintType : GenericConstraintKind [1]
The type of the GenericConstraint, see GenericConstraintKind.

e genericConstraintValue : String [1]

©2008-2010 The ATESST2 Consortium 171 (227)

EAST-ADL Domain Model Specification version 2.1

The genericConstraintValue is the concrete value of the GenericConstraint according to the
semantics of the genericConstraintType.

Associations

e mode : Mode [*]
The mode where this GenericConstraint is valid.

o target : Identifiable [*]
The subject of the GenericConstraint.

Constraints
No additional constraints
Semantics

The GenericConstraint does not describe what is classically referred to as a "design" constraint
but has the role of a property, requirement, or a validation result. It is a requirement if this
GenericConstraint refines a Requirement (by the Refine relationship). The GenericConstraint is a
validation result if it realizes a VVActualOutcome, it is an intended validation result if it realizes a
VVintendedOutcome, and in other cases it denotes a property.

23.2.2 GenericConstraintKind (from GenericConstraints) «enumeration»

Generalizations

None

Description

Enumeration for different type of constraints.
Enumeration Literals

e cableLength
The length of the cable.

¢ developmentCost
The overall development cost.

e functionAllocationDifferentNodes
The targets (the DesignFunctions) shall be allocated on different Nodes.

This constraint needs to be implemented by appropriate FunctionAllocations in the
DesignLevel.

e functionAllocationSameNode
The targets (the DesignFunctions) shall be allocated on the same Node.

This constraint needs to be implemented by appropriate FunctionAllocations in the
DesignLevel.

e other
e pieceCost
The costs per piece.

e powerConsumption
The power consumption of the unit.

e powerSupplylndependent
The targets (the DesignFunctions) shall be allocated to Nodes with independent power
supplies.

©2008-2010 The ATESST2 Consortium 172 (227)

EAST-ADL Domain Model Specification version 2.1

This constraint needs to be implemented by appropriate FunctionAllocations in the
DesignLevel.

e spaceRedundancy
The targets are replicated for redundancy, genericConstraintValue times.

e standard
The standard (e.g., 1ISO26262) that is the basis for development of the target.

¢ timeRedundancy
The targets are executed with time redundancy, genericConstraintValue times.

o weight
The physical weight of the unit.

Associations

No additional associations
Constraints

No additional constraints
Semantics

The semantics is defined on each literal.

23.2.3 GenericConstraintSet (from GenericConstraints)

Generalizations

e Context (from Elements)
Description

The collection of generic constraints. This collection can be used across the EAST-ADL
abstraction levels.

Attributes
No additional attributes
Associations

e genericConstraint : GenericConstraint [*]
Constraints

No additional constraints
Semantics

GenericConstraintSet is container element for GenericConstraints and has no specific semantics.

23.2.4 TakeRateConstraint (from GenericConstraints)

Generalizations

e GenericConstraint (from GenericConstraints)
Description

The TakeRateConstraint defines the ratio between the number of configurations that includes the
target elements and the number of configurations that include the source. If several source
elements are referenced, it would be the configurations in which all these exist.

©2008-2010 The ATESST2 Consortium 173 (227)

EAST-ADL Domain Model Specification version 2.1

TakeRateConstraint complements configuration decisions, as the latter defines the rules for actual
configuration. TakeRateConstraint defines expected rates of configurations and the set of
constraints should be consistent with the configuration decisions. Also, the set of
TakeRateConstraints shall be consistent among themselves.

Attributes

o takeRate : Float [1]
The rate of target compared with source configurations.

Associations

e source : ldentifiable [*]
The elements that are compared with the elements identified by target (see
GenericConstraint).

Constraints
[1] The cardinality of target is >0
Semantics

The TakeRate constraint defines frequency of configurations. Let sourceamount and
targetamount be the number of system configurations where all source and target elements,
respectively, are included. takeRate= targetamount/sourceamount. If no source is associated,
takeRate=targetamount

©2008-2010 The ATESST2 Consortium 174 (227)

EAST-ADL Domain Model Specification version 2.1

Part IX Infrastructure

This part specifies the infrastructure constructs in the EAST-ADL.

©2008-2010 The ATESST2 Consortium 175 (227)

EAST-ADL Domain Model Specification version 2.1

24 Datatypes

24.1 Overview

The Datatypes subpackage of EAST-ADL defines EAST-ADL general-purpose datatypes that may
be used to type structural constructs in several different modeling diagrams.

The purpose of the metaclasses in the Datatypes subpackage is to specify the concepts for the
specific domain.

EfBoolesn
\\‘D Tracesble Specification EAElement
+hype
] adtpTypes watpPrototypes
EAString ——’[> EADatatyoe 1 wizOfTypen * |EAD=tatype Prototype
/ +datatypePrototype
1.7
Enurmeration 0.1 {ordered}
1 /]\ 1 ValueType CompositeDatatype
+baseEnumeration + description: String [0..1]
+ dimension: String [0..1]
+literal | 2.7 {ordered} + unit: String [0..1]
EAElememt +baseRangeable RangezbleDzizfype

ErumerationLiteral /
1

R blevalueT
EnurmerstionyaluaType e [= EAlrteger
R N K + accuracy: Float
+ |.sh-1ult|\-falued.. I?Ioole_an . o eslniene Fleek + max Float + max int
+ literalSemantics: String [2..7] {ordered} + significantligits: int [0..1] + min: Float + min: int

Figure 36. Diagram for Datatypes.

24.2 Element Descriptions

24.2.1 CompositeDatatype (from Datatypes)

Generalizations

o EADatatype (from Datatypes)
Description

A CompositeDatatype represents a non-scalar datatype. Take as an example a
CompositeDatatype "MyCountries" that can refer, e.g., to an Enumeration "CountryEnumeration”
{USA, Canada, Japan, EU} via two EADatatypePrototypes (record variables): FirstCountry and
SecondCountry. Then an attribute typed by this CompositeDatatype "MyCountries" may have a
value like: (EU (identified as FirstCountry), Japan (identified as SecondCountry)).

Attributes
No additional attributes
Associations

o datatypePrototype : EADatatypePrototype [1..*] {ordered}

©2008-2010 The ATESST2 Consortium 176 (227)

EAST-ADL Domain Model Specification version 2.1

The record variable owned by the CompositeDatatype.
Constraints
No additional constraints
Semantics

A CompositeDatatype represents a non-scalar datatype. The contained datatypePrototypes act as
record variables to identify the ordered datatype instances of the tuple (the CompositeDatatype).

24.2.2 EABoolean (from Datatypes)

Generalizations

o EADatatype (from Datatypes)
Description

A Boolean value denotes a logical condition that is either 'true' or 'false'.
Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

Boolean is the primitive type that holds two literals: true, false.

24.2.3 EADatatype (from Datatypes) {abstract} «atpType»

Generalizations

e TraceableSpecification (from Elements)
Description

The EADatatype is a metaclass, which signifies a type whose instances are identified only by their
value. The EADatatype metaclass represents the description of the value set for some variable,
parameter etc. without a description of how these possible values are represented at
implementation level. The implementation representation is defined at implementation level by the
AUTOSAR concept PrimitiveTypeWithSemantics, and the implemented datatype shall be
associated with a Realization relationship. The realizing datatype must match the EADatatype
regarding range, resolution, unit, and dimension.

Attributes

No additional attributes
Associations

No additional associations
Constraints

[1] In the case of an AR implementation, an EADatatype is realized generally by
Primitive TypeWithSemantics, which has to be consistent w.r.t. range, resolution, etc.

©2008-2010 The ATESST2 Consortium 177 (227)

EAST-ADL Domain Model Specification version 2.1

Semantics

EADatatype metaclass is a special kind of classifier, similar to a class. It differs from the class in
that instances of a data type are identified only by their value.

24.2.4 EADatatypePrototype (from Datatypes) «atpPrototype»

Generalizations

o EAElement (from Elements)
Description

The EADatatypePrototype represents a typed variable. An example is a composite datatype
ColorValue with parts R, G, and B of type integer. ColorValue would contain three prototypes only
to be able to reference the record parts by name.

Attributes
No additional attributes
Associations

o type : EADatatype [1]
«isOfType»

The type of the EADatatypePrototype.
Constraints
No additional constraints
Semantics

The EADatatypePrototype represents a typed variable. It acts as an appearance of a datatype.

24.2.5 EAFloat (from Datatypes)

Generalizations

¢ RangeableDatatype (from Datatypes)
Description

An instance of Float is an element from the set of real numbers. The value must comply with IEEE
754 and is limited to what can be expressed by a 64 bit binary representation.

Attributes

e max: Float [1]
The maximal value of the range.

e min : Float [1]
The minimum value of the range.

Associations

No additional associations
Constraints

No additional constraints

Semantics

©2008-2010 The ATESST2 Consortium 178 (227)

EAST-ADL Domain Model Specification version 2.1

Float has the semantics of the Float datatype as defined by IEEE Standard for Floating-Point
Arithmetic (IEEE 754).

24.2.6 EAlnteger (from Datatypes)

Generalizations

¢ RangeableDatatype (from Datatypes)
Description

An instance of Integer is an element in the set of integer numbers (..., -2, -1, 0, 1, 2, ...).
Attributes

e max:int[1]
The maximal value of the range.

e min:int[1]
The minimum value of the range.

Associations

No additional associations
Constraints

No additional constraints
Semantics

An instance of Integer is an element in the set of integer numbers (..., -2,-1,0, 1, 2, ...).

24.2.7 EAString (from Datatypes)

Generalizations

¢ EADatatype (from Datatypes)
Description

A string is a sequence of characters in some suitable character set used to display information
about the model. Character sets may include non-Roman alphabets and characters. An instance
of String defines a piece of text. The semantics of the string itself depends on its purpose. It can
be a comment, computational language expression, OCL expression, etc. It is used for String
attributes and String expressions in the metamodel.

Attributes

No additional attributes
Associations

No additional associations
Constraints

No additional constraints
Semantics

String is the primitive type that defines a sequence of characters in some suitable character set
used to display information.

©2008-2010 The ATESST2 Consortium 179 (227)

EAST-ADL Domain Model Specification version 2.1

24.2.8 Enumeration (from Datatypes)

Generalizations

o EADatatype (from Datatypes)
Description

An enumeration is a datatype whose values are enumerated in the model as enumeration literals.
Enumeration is a kind of datatype, whose instances may be any of a number of user-defined
enumeration literals.

Attributes
No additional attributes
Associations

o literal : EnumerationLiteral [2..*] {ordered}
The literal (value) of the enumeration.

Constraints
No additional constraints
Semantics

Enumeration is a kind of datatype, whose instances may be any number > 1 of user-defined
enumeration literals. Enumerations contain at least two literals, otherwise it would be a constant).
The contained literals need to be ordered.

24.2.9 EnumerationLiteral (from Datatypes)

Generalizations

o EAElement (from Elements)
Description

An enumeration literal is a user-defined data value for an enumeration.
Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

An EnumerationLiteral defines an element of the run-time extension of an enumeration data type.
An EnumerationLiteral has a name (inherited from EAElement) that can be used to identify it within
its Enumeration datatype. The EnumerationLiteral name is scoped and must therefore be unique
within its Enumeration. EnumerationLiteral names are not global and must be qualified for general
use. The run-time values corresponding to EnumerationLiterals can be compared for equality.

24.2.10 EnumerationValueType (from Datatypes)

Generalizations

©2008-2010 The ATESST2 Consortium 180 (227)

EAST-ADL Domain Model Specification version 2.1

¢ ValueType (from Datatypes)
Description

The EnumerationValueType is a specific ValueType applicable for Enumerations. It provides the
possibility to describe semantics of the baseEnumeration's literals and the information, if multiple
values of the baseEnumeration may be selected or not.

Attributes

e isMultiValued : Boolean [1]
This boolean attribute is true, if multiple enumeration values can be selected. It is false, if
only one enumeration value is allowed to be selected.

o literalSemantics : String [2..*]
The specific semantics for each literal of the baseEnumeration.

Associations

e baseEnumeration : Enumeration [1]
The enumeration that the EnumerationValueType points to.

Constraints
No additional constraints
Semantics

The EnumerationValueType adds the ability to describe semantics of the baseEnumeration's
literals and if multiple values of the baseEnumeration may be selected or not.

24.2.11 RangeableDatatype (from Datatypes) {abstract}

Generalizations

o EADatatype (from Datatypes)
Description

The abstract metaclass RangeableDatatype reflects numeric datatypes that may have a range
(between a minimal and a maximal value). An example for a RangeableDatatype is the Celsius
temperature scale with minValue = -273.15.

Attributes

No additional attributes
Associations

No additional associations
Constraints

No additional constraints
Semantics

The abstract metaclass RangeableDatatype reflects numeric datatypes that may have a range
(between a minimal and a maximal value).

24.2.12 RangeableValueType (from Datatypes)

Generalizations

e ValueType (from Datatypes)

©2008-2010 The ATESST2 Consortium 181 (227)

EAST-ADL Domain Model Specification version 2.1

Description

The RangeableValueType is a specific ValueType applicable for RangeableDatatypes. It describes
the accuracy, resolution, and the significant digits of the baseRangeable datatypes.

Attributes

e accuracy : Float [1]
The accuracy of the data (e.g., the FunctionFlowports input or output).

Example: An accuracy of 0.5 of the temperature means a communicated value of 19
represents an actual temperature of 19 +/- 0.5 degrees.

e resolution : Float [1]
The resolution of the data expressed as the size of the minimum difference between data
values.

Example: A resolution of 0.1 means that temperature may be represented in increments of
0.1 degrees.
¢ significantDigits : int [0..1]

The number of significant digits, e.g., for the speed case: if the speed is a one digit number
(e.g., 5 km/h), then this digit is significant, if the speed is a two digits number (e.g., 15
km/h), then the first digit is significant (here: 1), if the speed is a three digits number (e.g.,
215 km/h), then the first two digits are significant (here: 21). Significant means here, that
the respective digits are reliable.

Associations

¢ baseRangeable : RangeableDatatype [1]
The RangeableDatatype that the RangeableValueType points to.

Constraints
No additional constraints
Semantics

The RangeableValueType adds the ability to describe the accuracy, resolution, and the significant
digits of the baseRangeable datatype.

24.2.13 ValueType (from Datatypes) {abstract}

Generalizations

o EADatatype (from Datatypes)
Description

From SysML:

A ValueType defines types of values that may be used to express information about a system, but
cannot be identified as the target of any reference. Since a value cannot be identified except by
means of the value itself, each such value within a model is independent of any other, unless other
forms of constraints are imposed. Value types may be used to type properties, operation
parameters, or potentially other elements within SysML. SysML defines ValueType as a stereotype
of UML DataType to establish a more neutral term for system values that may never be given a
concrete data representation. For example, the SysML "Real" ValueType expresses the
mathematical concept of a real number, but does not impose any restrictions on the precision or
scale of a fixed or floating-point representation that expresses this concept. More specific value
types can define the concrete data representations that a digital computer can process, such as
conventional Float, Integer, or String types. SysML ValueType adds an ability to carry a unit of

©2008-2010 The ATESST2 Consortium 182 (227)

EAST-ADL Domain Model Specification version 2.1

measurement or dimension associated with the value. A dimension is a kind of quantity that may
be stated in terms of defined units, but does not restrict the selection of a unit to state the value. A
unit is a particular value in terms of which a quantity of the same dimension may be expressed. A
SysML ValueType may define its own properties and/or operations, just as for a UML DataType.

Attributes

e description : String [0..1]
Description of the datatype ValueType.

e dimension : String [0..1]
The (physical) quantity, e.g., "Speed", "Temperature".

e unit: String [0..1]
The unit of data.

Example: For temperature the unit may be "degree Celsius".
Associations
No additional associations
Constraints
No additional constraints
Semantics

The abstract metaclass ValueType defines types of values that may be used to express
information about a system. The ValueType adds an ability to carry a description, a dimension
associated with the value, and a unit of measure. A dimension is a kind of quantity that may be
stated in terms of defined units, but does not restrict the selection of a unit to state the value. A
unit is a particular value in terms of which a quantity of the same dimension may be expressed.

Logical and physical datatypes cannot be distinguished on the type. The context (e.g.,
EnvironmentModel or FunctionalAnalysisArchitecture) decides if a speed datatype is physical or
logical. On AnalysisLevel or DesignLevel, physical datatypes shall not be interpreted in the
implementation sense as this would include int32, coding formula, etc.

©2008-2010 The ATESST2 Consortium 183 (227)

EAST-ADL Domain Model Specification version 2.1

25 Elements

25.1 Overview

The Element subpackage of the Infrastructure package of the EAST-ADL specifies the most basic

abstract structural constructs in EAST-ADL.

Realization

Relzfionshin

+realizedBy

Tl trealized

RN

Idenfifizhlelderfifizhle

= |+ categons: String [0..1]
+ shortMame: Identifier
+ uuid: String

LeerdltdhuteahleElement
EAElentent

+ name: String [0..1]

+referring 1 +reference 1

+ownnedRelationship

EAFPzckageshleElemeant

Canfexf

=

Figure 37. Diagram for RelationshipModeling.

©2008-2010 The ATESST2 Consortium

184 (227)

fulti Lewel Reference

EAST-ADL Domain Model Specification version 2.1

asplitables
+subPackage 0.7 H B.1
EANML
EAPackage CAFPackageabletlentent
+topLlevelPacdkage +elemeant
tags i . -

admin.documentyersion = 2010-06-30) 0.1 «splitables 0.r 0.1 ysplitables
autosar.documentWersion = 3.1
xml.globalElement = true &

Idenfifizble:ldenfifizble
watphlixedString»

FormulaBxpression _[:’-’ + categons: String [0..1]
+ shodMame: ldentifier
+ uuid: String

1

LserdiibuteableElement
EAElenrent

TreceableSpecificafion

v - -
+ name: String [0..1] text: String [0..1]

=

0.1 +traceableSpecification
+omnedComment = q

Coorn rmenit
Relationskio +awnedRelationship Confext
+ body: String L
Q i a1

Rationale

Figure 38. Diagram for Elements.

25.2 Element Descriptions

25.2.1 Comment (from Elements)

Generalizations

None

Description

Comment represents a textual annotation.
Attributes

e body : String [1]
Specifies a string that is the comment.

Associations

No additional associations
Constraints

No additional constraints

Semantics

©2008-2010 The ATESST2 Consortium 185 (227)

EAST-ADL Domain Model Specification version 2.1

25.2.2 Context (from Elements) {abstract}

Generalizations

o EAPackageableElement (from Elements)
Description

Context represents a simple and practical way to allocate TraceableSpecifications to a specific
EAST-ADL model context, and to let this specific model context own Relationships.

Attributes
No additional attributes
Associations

¢ ownedRelationship : Relationship [*]
Relationship(s) owned by this context.

e traceableSpecification : TraceableSpecification [*]
Traceable specification(s) identified by this context.

Constraints
No additional constraints
Semantics

See Relationship and TraceableSpecification.

25.2.3 EAElement (from Elements) {abstract}

Generalizations

¢ Identifiable (from Identifiable)
e UserAttributeableElement (from UserAttributes)
Description

The EAElement is an abstract metaclass that represents an arbitrary named entity in the domain
model. It specializes AUTOSAR Identifiable which has the shortName attribute used for
identification of the element within the namespace in which it is defined.

The abbreviation EA in the name of this metaclass is short for EAST-ADL.
Attributes

e name : String [0..1]
Optional descriptive name of the EAElement, this name does not have the length
restrictions as found for the AUTOSAR Identfiable shortName.

Associations

e ownedComment : Comment [*]
Comment owned by this EAElement.

Constraints
No additional constraints

Semantics

©2008-2010 The ATESST2 Consortium 186 (227)

EAST-ADL Domain Model Specification version 2.1

Also the EAElement can be used to extend the EAST-ADL approach to other languages and
standards by adding a generalize relation from the respective (non EAST-ADL) element to the
EAElement.

25.2.4 EAPackage (from Elements)

Generalizations

¢ Identifiable (from Identifiable)
Description

Used for organization of the packageable elements in the model.
Attributes

No additional attributes

Associations

e element : EAPackageableElement [*]
«splitable»

Contained packageable elements.

e subPackage : EAPackage [0..*]
«splitable»

Contained packages.
Constraints
No additional constraints
Semantics

EAPackages can be organized hierarchically, where each level may contain a number of
EAPackageableElements.

25.2.5 EAPackageableElement (from Elements) {abstract}

Generalizations

¢ EAElement (from Elements)
Description

Elements that are packageable may be directly contained in a package.
Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

Elements specializing EAPackageableElement can be created directly within an EAPackage.

©2008-2010 The ATESST2 Consortium 187 (227)

EAST-ADL Domain Model Specification version 2.1

25.2.6 EAXML (from Elements)

Generalizations

None

Description

The root element of an exchanged XML file which contains an EAST-ADL model.
Attributes

No additional attributes

Associations

o topLevelPackage : EAPackage [0..*]
«splitable»

Contained top level packages.
Constraints
No additional constraints

Semantics

25.2.7 FormulaExpression (from Elements) {abstract} «atpMixedString»

Generalizations

¢ Identifiable (from Identifiable)
Description

Subclasses have the capability of using the elements identified through associations in formulas.
This may be realized by qualified names in a formula or in an XML implementation as an ordered
mix between elements and text.

Compare implementation in AUTOSAR.
Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

25.2.8 MultiLevelReference (from Elements)

Generalizations

¢ Relationship (from Elements)
Description

©2008-2010 The ATESST2 Consortium 188 (227)

EAST-ADL Domain Model Specification version 2.1

The metaclass MultiLevelReference gives the possibility to establish reference links between
model elements. Such a reference may be established between two elements when both of them
are slightly different but one element is newer and originates from the other element.

With such reference, it is possible to keep track of changes (by humans and also computational) in
compare to origin elements. Moreover, it is possible to take over the changes into the original. In
EAST-ADL, the Multi-Level concept will be used for the Feature Modeling and for the
Requirements Interchange. More detailed informations about the Multi-Level concept in general
and also about the use of this concept in the context of Feature Trees and for Requirements
Exchange can be found in the ATESST2 papers "Multi Level Feature Trees" and "Manufacturer-
Supplier Requirements Synchronization Using Exchange Containers and Multi-Level Systems

Attributes
No additional attributes
Associations

o referring : EAElement [1]
The target elements of a MultiLevelReference link.

o reference : EAElement [1]
The source element of a MultiLevelReference link.

Constraints
No additional constraints

Semantics

25.2.9 Rationale (from Elements)

Generalizations

e Comment (from Elements)
Description

Rationale represents a justification to any model element.
Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

25.2.10 Realization (from Elements)

Generalizations

¢ Relationship (from Elements)
Description

©2008-2010 The ATESST2 Consortium 189 (227)

EAST-ADL Domain Model Specification version 2.1

The Realization is a relationship which relates two or more elements across boundaries of the
EAST-ADL abstraction levels.

It identifies an element that serves as a specification within this realization relationship and on the
other side it identifies an element that is supposed to realize this specification on a lower
abstraction level or an implementation.

Attributes

No additional attributes
Associations

No additional associations
Dependencies

o realized : EAElement [1..%]
«instanceRef»

e realizedBy : Identifiable [*]
«instanceRef»

Constraints
No additional constraints
Semantics

Modification of the realized element impacts the realizing element.

25.2.11 Relationship (from Elements) {abstract}

Generalizations

o EAElement (from Elements)
Description

The Relationship is an abstract metaclass which represents a relationship between arbitrary
elements.

Attributes

No additional attributes
Associations

No additional associations
Constraints

No additional constraints
Semantics

In many cases, Contexts such as functions and sensors need to have requirements and other
specification elements allocated to them. In other cases, the relationship between an element and
the related specification element is specific for a certain Context: for example a Requirement on a
sensor is only applicable in certain hardware architectures. These relationships are modeled by
concrete specializations of Relationship.

See Context and TraceableSpecification.

25.2.12 TraceableSpecification (from Elements) {abstract}

©2008-2010 The ATESST2 Consortium 190 (227)

EAST-ADL Domain Model Specification version 2.1

Generalizations

e EAPackageableElement (from Elements)
Description

The TraceableSpecification is an abstract metaclass which is used to allow its specializations to be
allocated to a Context.

Attributes

e text: String [0..1]
An optional description attribute that provides textual representation, or a reference to the
textual representation, of the Traceable Specification in a specific formalism.

Associations

No additional associations
Constraints

No additional constraints
Semantics

TraceableSpecification is specialized by requirements, test cases and other specifications, that
can be allocated to a Context, for example to a sensor or to an entire HW architecture.

See Context and Relationship.

©2008-2010 The ATESST2 Consortium 191 (227)

EAST-ADL Domain Model Specification version 2.1

26 UserAttributes

26.1 Overview

User attributes in EAST-ADL are primarily intended to provide a mechanism for augmenting the
elements of an EAST-ADL model with customized meta-information. All instances of metaclass
UserAttributeableElement can have user attributes attached to them. The scope and structuring of
this meta-information can be defined on a per-project basis by defining user attributes for certain
types of EAST-ADL elements within UserAttributeTemplates.

Since EAST-ADL Requirements are, in their most general form, simple objects with all information
contained in user-customized, project-specific attributes, the concept of user attributes is also
perfectly suitable for defining those attributes of requirements. In that sense, basic Requirements
in EAST-ADL can be seen as "empty" elements which only provide a node to which user attributes
can be attached in order to supply the Requirement with all necessary information, including its
main textual description. However, in the case when the Requirement is the context in which the
available user attributes are defined, the container (context) of the Requirements is the point
where user attribute definitions are stored and these are only applicable within this container.

The role of user attributes within the overall EAST-ADL is thus twofold: they (1) provide a means to
customize the language to specific company and project needs and (2) constitute an important
part of the requirements support of the language.

The mechanism of user attributes was optimized for flexibility and simplicity. User attributes are
realized by simple key/value pairs where the globally unique key identifies the user attribute (cf.
class UserAttributeValue). In principle, any key/value combination may be attached to any
element, but user attribute definitions may optionally be provided to define valid keys and a set of
legal values for them (cf. class UserAttributeDefinition). However, the actual attributes attached to
an element and/or their values may well conflict with these attribute definitions: for example, it is
perfectly legal to not provide an attribute value if an attribute definition was specified, or to provide
a value for an undefined attribute. The attribute definitions are merely meant as a guideline for the
engineer and as a basis for optionally checking if all attribute values are correct with respect to
attribute definitions (by way of tool support). With this concept of attribute values and definitions,
many intricacies and difficult situations during the creation and evolution of a model are
circumvented and complex interdependencies between parts of the model are avoided. For
example, it makes sure that a model, and all its user attribute values, can be safely viewed and
edited even if the attribute definitions for the model are temporarily unavailable or permanently
lost.

Whenever interoperability with third parties is required an internet domain naming scheme should
be used, similar to packages in the Java programming language. For example, a company with a
home page URL of "www.example.com" could use the key "com.example.Status" for a status
attribute.

User attributes in EAST-ADL serve a similar purpose to stereotypes in UML2 but are intended as a
much simpler mechanism, especially with respect to tool implementation.

©2008-2010 The ATESST2 Consortium 192 (227)

EAST-ADL Domain Model Specification version 2.1

UserdfiribufeableElement * *tudifalue EAElamant
i U=erattribootevalue
+ key: String
+ walue: String

+uaType 0.

EAPachzgeableElemeant
UserAttribute ElementType

+ walidFor: String [0..1] Zl

+extendedElementType 0.1
0.1 *

+attribute

El

EAElememnt

UserAdtribute Definition Tracezhle Specification
+ype

+ defaultWalue: String [0..1]
+ description: String [0..1]
+ hey: String

watpTypen
Dafafypes EADIi3iype

-

Figure 39. Diagram for User Attributes.

26.2 Element Descriptions

26.2.1 UserAttributeableElement (from UserAttributes) {abstract}

Generalizations
None
Description

UserAttributableElement represents an element to which user attributes can be attached. This is
done by way of UserAttributeValues (see association 'uaValues'). What user attributes a certain
element should be supplied with can be defined beforehand with UserAttributeDefinitions which
are organized in UserAttributeElementTypes (see association 'uaTypes').

IMPORTANT: It is technically possible and legal to attach any key/value pair, even if this is in
conflict with the attribute definitions of the UserAttributeElementTypes of this
UserAttributeableElement (as defined by association ‘uaTypes'). All implementations of this
information model must expect such attribute definition violations. The reason for this is that (1)
the attribute definitions and the types they define for the attributes are only meant as a guideline
for working with user attributes on the modeling level, not as an implementation level type system
and (2) this convention avoids a multitude of intricate problems when editing a model's user
attribute definitions or values, which significantly simplifies implementation.

Attributes
No additional attributes
Associations

e uaValue : UserAttributeValue [*]
The user attribute values, i.e. key/value pairs, which are attached to this element.

©2008-2010 The ATESST2 Consortium 193 (227)

EAST-ADL Domain Model Specification version 2.1

e uaType : UserAttributeElementType [0..*]
The UAElementTypesUserAttributeElementTypes of this user attributeable element.

It is possible to provide more than one type. In that case, the UserAttributeDefinitions of all
UAElementTypesUserAttributeElementTypes apply. If there are several attribute definitions
with an identical 'key', then the corresponding user attribute will be applied only once.

Constraints
No additional constraints

Semantics

26.2.2 UserAttributeDefinition (from UserAttributes)

Generalizations

o EAElement (from Elements)
Description

UserAttributeDefinition represents a user attribute, i.e. it states that all UserAttributeableElements
of a certain UserAttributeElementType are to be attached with an attribute identified by 'key'. For
example, it can be specified that certain elements should be amended with an attribute "Status".

Attributes

o defaultValue : String [0..1]
The default value. This is to be used whenever a user attributeable element has no
UserAttributeValue for the key of this UserAttributeDefinition.

e description : String [0..1]
A description statement.

o key : String [1]
A unique identifier for the user attribute. Please refer to the description of attribute 'key' in
metaclass UserAttributeValue for a detailed discussion on how to construct valid, globally
unique keys.

Associations

o type : EADatatype [1]
The type of the user attribute. This type defines the set of legal values for the given user
attribute, i.e. for all UserAttributeValues with the same key as this UserAttribute Definition.

Constraints
No additional constraints

Semantics

26.2.3 UserAttributeElementType (from UserAttributes)

Generalizations

e EAPackageableElement (from Elements)
Description

©2008-2010 The ATESST2 Consortium 194 (227)

EAST-ADL Domain Model Specification version 2.1

UserAttributeElementType represents a certain, user-defined type of user attributeable elements.
With such a type, one or more user attributes can be defined for all user attributeable elements of
that type.

For example, engineers at Volkswagen could create a UserAttributeElementType called
"VWFunction" with a single user attribute definition. That way, all FunctionTypes for which
"VWFunction" is defined as the UserAttributeElementType via association uaType will have the
corresponding user attribute.

User attribute element types can be compared to stereotypes in UML2, but are less rigidly defined.
Attributes

¢ validFor : String [0..1]
Comma-separated list of metaclass names this user attribute element type is applicable to.
If undefined, then this wuser attribute element type is applicable to all
UserAttributeableElements.

Example: If UserAttributeElementType 'VWFunction' has its validFor attribute set to
"FunctionalDevice,LocalDeviceManager”, then element type 'VWFunction' is only
applicable to functional devices and local device managers, i.e. only instances of
FunctionalDevice and LocalDeviceManager may have their association uaType point to
‘VWFunction'.

Associations

o extendedElementType : UserAttributeElementType [0..1]
The UserAttributeElementType this type is inheriting from.

When UserAttributeElementType ET2 inherits from type ET1, then this means that all
attributes defined for ET1 by way of UserAttributeDefinitions are available whenever ET2 is
specified as the type of a user attributeable element (in addition to those directly defined in
ET2). This includes UserAttributeDefinitions which ET1 itself may inherit from other types.

o attribute : UserAttributeDefinition [*]
The attributes defined for this type. Note that inherited attribute definitions also need to be
taken into account (cf. association 'extendedElementTypes').

Constraints
No additional constraints

Semantics

26.2.4 UserAttributeValue (from UserAttributes)

Generalizations

e EAElement (from Elements)
Description

UserAttributeValue represents a specific value for a certain user attribute. User attributes are
simple key/value pairs which can be attached to all UserAttributeableElements. Each user attribute
is identified by a globally unique key.

In principle, there is no restriction which user attributes, i.e. keys, may be attached to a particular
element and what strings may be used as value (cf. class UserAttributeableElement). However,
user attribute definitions can be used to define a set of legal values for a particular key (see class
UserAttributeDefinition) and user attribute element types can be used to state what attributes, i.e.

©2008-2010 The ATESST2 Consortium 195 (227)

EAST-ADL Domain Model Specification version 2.1

keys, may or should be attached to elements of certain types (cf. class
UserAttributeElementType).

The actual value is captured in attribute 'value' and is always represented as a string.
Attributes

o key: String [1]
The globally unique identifier of the user attribute for which this UserAttributeValue
provides a value. Any string may be used as key as long as it is globally unique.

However, there is a recommended procedure for building globally unique keys for user
attributes, similar to packages in the Java programming language:

(1) use an internet domain name which is sufficiently specific so that you have control over
who will use it for user attribute key generation (e.g. "myDepartment.myCompany.com")

(2) reverse it as in Java package names (e.g. "com.myCompany.myDepartment")

(3) optionally append additional, dot-separated names for the specific context in which the
user attribute is to be used (e.g. "myProject” which results in
"com.myCompany.myDepartment.myProject")

(4) add a last segment that names the user attribute and is sufficiently descriptive to
explain its purpose (e.g. "ReviewStatus").

In this example, the key of our status attribute would be
"com.myCompany.myDepartment.myProject.ReviewStatus".

In general, the last segment of the key, i.e. everything following the last dot, should be
sufficient to identify the attribute in its usual, most specific context of use. Therefore,
implementations may use this last segment as an abbreviated name of the user attribute,
e.g. for presenting it in a GUI.

e value: String [1]
Holds the actual value of the user attribute identified by 'key'. This value is always
represented as a string. Non-string values, such as integers, are specified by their
corresponding string representation.

In cases where a UserAttributeDefinition is in effect and declares a particular Datatype for
a user attribute (cf. association 'type' in UserAttributeDefinition), the 'value' attribute will
hold the string representation of any valid value of this data type. The precise format

nun

depends on the data type: for numeric types the radix must be 10 and "." is to be used as
decimal point ; date format is milliseconds since the standard base time known as "the
epoch”, namely January 1, 1970, 00:00:00 GMT ; multi-valued types are realized as a
comma-separated list of individual values.

Associations

No additional associations
Constraints

No additional constraints

Semantics

©2008-2010 The ATESST2 Consortium 196 (227)

EAST-ADL Domain Model Specification version 2.1

Part X Annexes

©2008-2010 The ATESST2 Consortium 197 (227)

EAST-ADL Domain Model Specification version 2.1

27 Annex A: Notation

This annex lists the elements with defined notations to be used when the element is shown in a
diagram. For those elements that are not listed here the general notation is a solid-outline
rectangle with the metaclass name at the top right. The rectangle contains the user defined name
of the element.

27.1.1.1 Actuator (from HardwareModeling)

Actuator is shown as a solid-outline rectangle with double vertical borders. The rectangle contains
the name, and its ports or port groups on the perimeter.

27.1.1.2 AnalysisLevel (from SystemModeling)

The Analysis Architecture is shown as a solid-outline rectangle containing the name, with its ports
or port groups on the perimeter. Contained entities may be shown with their connectors (White-
box view).

27.1.1.3 CommunicationHardwarePin (from HardwareModeling)

CommunicationHardwarePin is shown as a solid square with a C inside. Its name may appear
outside the square.

27.1.1.4 CompositeDatatype (from Datatypes)

The datatype CompositeDatatype is denoted using the rectangle symbol with keyword «Datatype
CompositeDatatype».

27.1.1.5 DeriveRequirement (from Requirements)

A DeriveRequirement relationship is shown as a dashed arrow between two Requirements. The
Requirement at the tail of the arrow (the derived Requirement) depends on the Requirement at the
arrowhead (the Requirement derived from).

27.1.1.6 DesignLevel (from SystemModeling)

The DesignLevel is shown as a solid-outline rectangle containing the name, with its ports or port
groups on the perimeter. Contained entities may be shown with their connectors (White-box view).

27.1.1.7 EABoolean (from Datatypes)

The datatype Boolean is denoted using the rectangle symbol with keyword «Datatype Boolean».

27.1.1.8 EADatatype (from Datatypes)

The EADatatype is denoted using the rectangle symbol with keyword «Datatype».

27.1.1.9 EAFloat (from Datatypes)

The datatype Float is denoted using the rectangle symbol with keyword «Datatype Float».

©2008-2010 The ATESST2 Consortium 198 (227)

EAST-ADL Domain Model Specification version 2.1

27.1.1.10 EAlnteger (from Datatypes)

The datatype Integer is denoted using the rectangle symbol with keyword «Datatype Integer».

27.1.1.11 EAString (from Datatypes)

The datatype String is denoted using the rectangle symbol with keyword «Datatype String».

27.1.1.12 Enumeration (from Datatypes)

The datatype Enumeration is denoted using the rectangle symbol with keyword «Datatype
Enumeration».

27.1.1.13 EnumerationLiteral (from Datatypes)

An EnumerationLiteral is typically shown as a name, one per line, in the compartment of the
Enumeration notation.

27.1.1.14 EnumerationValueType (from Datatypes)

The datatype EnumerationValueType is denoted using the rectangle symbol with keyword
«Datatype EnumerationValueType».

27.1.1.15 FunctionAllocation (from FunctionModeling)

A FunctionAllocation is shown as a dependency (dashed line) with an "allocation" keyword
attached to it.

27.1.1.16 FunctionBehavior (from Behavior)

FunctionBehavior appears as a solid-outline rectangle with "Behavior" at the top right. The
rectangle contains the name.

27.1.1.17 FunctionConnector (from FunctionModeling)

FunctionConnector is shown as a solid line

27.1.1.18 FunctionPrototype (from FunctionModeling)

Shall be shown in the same style as the class specified as type, however it shall be clear that this
is a patrt.

27.1.1.19 FunctionType (from FunctionModeling)

The FunctionType is shown as a solid-outline rectangle containing the name, with its
FunctionPorts or PortGroups on the perimeter. Contained entities may be shown with their
FunctionConnectors (White-box view).

27.1.1.20 HardwareComponentPrototype (from HardwareModeling)

©2008-2010 The ATESST2 Consortium 199 (227)

EAST-ADL Domain Model Specification version 2.1

Shall be shown in the same style as the class specified as type, however it shall be clear that this
is a patrt.

27.1.1.21 Hazard (from Dependability)

The Hazard is shown as a solid-outline rectangle with "Haz" at the top right. It contains the name
of the Hazard and optionally the name of the source entity.

27.1.1.22 HazardousEvent (from Dependability)

The HazardousEvent is shown as a solid-outline rectangle with "Haz" at the top right. It contains
the name of the HazardousEvent and optionally the name of the source entity.

27.1.1.23 IOHardwarePin (from HardwareModeling)

IOHardwarePin is shown as a solid square with an 10 inside. Its name may appear outside the
square.

27.1.1.24 Node (from HardwareModeling)

Node is shown as a solid-outline rectangle with Node at the top right. The rectangle contains the
name, and its ports or port groups on the perimeter.

27.1.1.25 PortGroup (from FunctionModeling)

FunctionConnectors connected to FunctionPorts of a PortGroup are graphically collapsed into a
single line.

The PortGroup is rendered as its contained ports, but with a double outline.

27.1.1.26 PowerHardwarePin (from HardwareModeling)

PowerHardwarePin is shown as a solid square with PWR inside. Its name may appear outside the
square.

27.1.1.27 PowerSupply (from HardwareModeling)

PowerSupply is shown as a solid-outline rectangle with "PWR" at the top right. The rectangle
contains the name, and its ports or port groups on the perimeter.

27.1.1.28 PrecedenceConstraint (from Timing)

PrecedenceConstraint is shown as a dashed arrow with "Precedes" next to it. It points from
preceeding to the successive entity.

27.1.1.29 RangeableValueType (from Datatypes)

The datatype RangeableValueType is denoted using the rectangle symbol with keyword «Datatype
RangeableValueType».

©2008-2010 The ATESST2 Consortium 200 (227)

EAST-ADL Domain Model Specification version 2.1

27.1.1.30 Realization (from Elements)

A Realization relationship is shown as a dashed line with a triangular arrowhead at the end that
corresponds to the realized entity. The entity at the tail of the arrow (the realizing EAElement or
the realizing ARElement) depends on the entity at the arrowhead (the realized EAElement).

27.1.1.31 Refine (from Requirements)

A Refine relationship is shown as a dashed arrow between the Requirements and EAElement. The
entity at the tail of the arrow (the refining EAElement) depends on the Requirement at the
arrowhead (the refined Requirement).

27.1.1.32 Requirement (from Requirements)

Requirement is shown as a solid rectangle with Req top right and its name.

27.1.1.33 RequirementsContainer (from Requirements)

RequirementContainer is shown as a solid-outline rectangle containing the name. Contained
entities may also be shown inside (White-box view)

27.1.1.34 SafetyGoal (from SafetyRequirement)

SafetyGoal is a box with text SafetyGoal at the top left.

27.1.1.35 Satisfy (from Requirements)

A Satisfy relationship is shown as a dashed line with an arrowhead at the end that corresponds to
the satisfied Requirement or UseCaseUseCase. The entity at the tail of the arrow (the satisfying
EAElement or the satisfying ARElement) depends on the entity at the arrowhead (the satisfied
Requirement or UseCaseUseCase).

27.1.1.36 Sensor (from HardwareModeling)

Sensor is shown as a Circle or oval. The circle contains the hame, and its ports or port groups on
the perimeter.

27.1.1.37 SystemModel (from SystemModeling)

The default notation for a SystemModel is a solid-outline rectangle containing the SystemModel's
name, and with compartments separating by horizontal lines containing features or other members
of the SystemModel. Contained entities may also be shown with their connectors (White-box
view).

27.1.1.38 Verify (from VerificationValidation)

A Verify relationship is shown as a dashed arrow between the Requirements and VVCase.

©2008-2010 The ATESST2 Consortium 201 (227)

EAST-ADL Domain Model Specification version 2.1

28 Annex B: Needs

This annex contains preliminary extensions to EAST-ADL 2.1 for the modeling of stakeholder
needs and related information. It is fully aligned with the language but not yet validated and ready
for inclusion in the base specification.

28.1 Overview

Conceat Coroept
i o ¢
Mission [fulfills VehicleSysfem +hazfn . Teen
Arehifecfure

1.7 1

+hasn|i1.7

Traceahle Specification Tfraceahle Specification +describedBys {1
Stakeholder Heed +stakeholder Stakeholder | identifias Comoept

ArchifeciuralDeserigfion

+ responsibilities: String

+ need: String 1.= N N q.7
o pioile G0 + suceessCriteria; String [0..1]
+affects i
Frareahle Specification +aggregates 1.7
ProblemStatement
Coroent
+problemStatement [+ impact: String ArchifecturalModel
. + problem: String
1504 solutionBenefits: String
+problemStatement 0.
Fraceahle Specification FisConceptFory| 0.7
FroductPositioning
. Cotext
+ drivingMeeds: String Traveahle Specification | +motivatesDevelopmentOf
+ keyCapabilities: String +productPozitioning Business Opportunity «atpStruc‘tureEIe.ment:o
+ primaryCompetitiveAltarnative: String ' Systembdodeling::
+ primaryDifferentiation: String 0.* + busineszOpportunity: String v Systemhtodel
+ targetCustomers: String

Figure 40. Diagram for Needs.

28.2 Element Descriptions

28.2.1 ArchitecturalDescription (from Needs) {abstract}

Generalizations

e Concept (from Needs)
Description

A collection of products to document an architecture. [IEEE 1471]
Attributes

No additional attributes

Associations

e aggregates : ArchitecturalModel [1..*]
e identifies : Stakeholder [1..*]
Constraints

©2008-2010 The ATESST2 Consortium 202 (227)

EAST-ADL Domain Model Specification version 2.1

No additional constraints

Semantics

28.2.2 ArchitecturalModel (from Needs) {abstract}

Generalizations

o Concept (from Needs)
Description

A view may consist of one or more architectural models. Each such architectural model is
developed using the methods established by its associated architectural viewpoint. An
architectural model may participate in more than one view. [IEEE 1471]

Attributes
No additional attributes
Associations

e isConceptFor : SystemModel [0..*]
Constraints

No additional constraints

Semantics

28.2.3 Architecture (from Needs) {abstract}

Generalizations

o Concept (from Needs)
Description

The fundamental organization of a system embodied by its components, their relationships to each
other, and to the environment, and the principles guiding its design and evolution. [IEEE 1471]

Attributes
No additional attributes
Associations

e describedBy : ArchitecturalDescription [1]
Constraints

No additional constraints

Semantics

28.2.4 BusinessOpportunity (from Needs)

Generalizations

e TraceableSpecification (from Elements)

©2008-2010 The ATESST2 Consortium 203 (227)

EAST-ADL Domain Model Specification version 2.1

Description

The business opportunity represents a brief description of the business opportunity being met by
developing the electrical/electronic system which establishes traceability from artifacts created
later, for example to provide rationales to design decisions or trade-off analysis.

Attributes

e businessOpportunity : String [1]
This attribute holds a brief description of the business opportunity being met by developing
the electrical/electronic system. This redefines the text attribute in TraceableSpecification.

Associations

¢ motivatesDevelopmentOf : SystemModel [1..*]
The SystemModel that the BusinessOpportunity motivates development of.

e problemStatement : ProblemStatement [0..*]
Optional relation to brief statements summarizing the problem being solved.

e productPositioning : ProductPositioning [0..*]
The optional ProductPositioning provides an overall statement summarizing, at the highest
level, the unique position the product intends to fill in the marketplace.

Constraints
No additional constraints

Semantics

28.2.5 Concept (from Needs) {abstract}

Generalizations

None

Description

An abstract or general idea inferred or derived from specific instances. [Webster]
Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

28.2.6 Mission (from Needs) {abstract}

Generalizations

e Concept (from Needs)
Description

©2008-2010 The ATESST2 Consortium 204 (227)

EAST-ADL Domain Model Specification version 2.1

A mission is a use or operation for which a system is intended by one or more stakeholders to
meet some set of objectives. [IEEE 1471]

Attributes

No additional attributes
Associations

No additional associations
Constraints

No additional constraints

Semantics

28.2.7 ProblemStatement (from Needs)

Generalizations

e TraceableSpecification (from Elements)
Description

The problem statement represents a brief statement summarizing the problem being solved which
gives the opportunity to establish traceability from artifacts created later, for example to provide
rationales to design decisions or trade-off analysis.

The problem statement could be extended with further modeling of dependencies between
different problems and deduction of root problems

Attributes

e impact : String [1]
The impact of the problem

e problem : String [1]
The brief problem statement. This redefines the text attribute in TraceableSpecification.

e solutionBenefits : String [1]
Lists some key benefits of a successful solution.

Associations

e affects : Stakeholder [*]
The Stakeholders affected by the problem.

Constraints
No additional constraints

Semantics

28.2.8 ProductPositioning (from Needs)

Generalizations

e TraceableSpecification (from Elements)
Description

©2008-2010 The ATESST2 Consortium 205 (227)

EAST-ADL Domain Model Specification version 2.1

The problem positioning represents an overall brief statement summarizing, at the highest level,
the unique position the product intends to fill in the marketplace which gives the opportunity to
establish traceability from artifacts created later, for example to provide rationales to design
decisions or trade-off analysis.

Positioning is assumed to belong to a particular context, typically a system, but also for a smaller
part of a system.

Attributes

e drivingNeeds : String [1]
Brief statement of key benefit; that is, the compelling need for the product.

o keyCapabilities : String [1]
Brief statement of the key capabilities

e primaryCompetitiveAlternative : String [1]
Brief statement of primary competitive alternative

¢ primaryDifferentiation : String [1]
Brief statement of primary differentiation

e targetCustomers : String [1]
Brief statement of target customers.

Associations

No additional associations
Constraints

No additional constraints

Semantics

28.2.9 Stakeholder (from Needs)

Generalizations

e TraceableSpecification (from Elements)
Description

The stakeholder represents various roles with regard to the creation and use of architectural
descriptions. Stakeholders include clients, users, the architect, developers, and evaluators. [[EEE
1471]

Attributes

e responsibilities : String [1]
Summarize the Stakeholder's key responsibilities with regard to the electrical/electronic
system being developed; that is, their interest as a Stakeholder.

e successCriteria : String [0..1]
Describes how the Stakeholder defines success.

Associations
No additional associations
Constraints

No additional constraints

©2008-2010 The ATESST2 Consortium 206 (227)

EAST-ADL Domain Model Specification version 2.1

Semantics

28.2.10 StakeholderNeed (from Needs)

Generalizations

¢ TraceableSpecification (from Elements)
Description

Stakeholder needs represent a list of the key problems as perceived by the stakeholder, and it
gives the opportunity to establish traceability from artifacts created later, for example to provide
rationales to design decisions or trade-off analysis.

Attributes

e need: String [1]
The brief need statement. Redefines text.

e priority : int [1]
The priority of the need.

Associations

e problemStatement : ProblemStatement [1..*]
The ProblemStatement that provide statements summarizing the problem being solved.

e stakeholder : Stakeholder [1..*]
Role with regard to the creation and use of architectural description.

Constraints
No additional constraints

Semantics

28.2.11 VehicleSystem (from Needs) {abstract}

Generalizations

o Concept (from Needs)
Description

A collection of components organized to accomplish a specific function or set of functions. [IEEE
1471]

Attributes
No additional attributes
Associations

e hasAn : Architecture [1]

e fulfills : Mission [1..*]

e has: Stakeholder [1..*]
Constraints

No additional constraints

Semantics

©2008-2010 The ATESST2 Consortium 207 (227)

EAST-ADL Domain Model Specification version 2.1

©2008-2010 The ATESST2 Consortium 208 (227)

EAST-ADL Domain Model Specification version 2.1

29 Annex C: BehaviorConstraints

This annex contains preliminary extensions to EAST-ADL 2.1 for the modeling of behavior
constraints. It is fully aligned with the language but not yet validated and ready for inclusion in the
base specification.

29.1 Overview

The Behavior Constraints Annex extends EAST-ADL with additional constructs for a more fine-
grained specification of key behavior attributes. It targets system requirements, vehicle features,
system functions, and error models. It can be used to constrain behavior definitions in external
models and formalisms (e.g., Simulink, UML, etc). The provision of such behavioral declarations in
EAST-ADL is also considered necessary to support the formalization of textual requirements as
well as for the reasoning of operational behaviors of vehicle features and environmental situations
in early development stages.

Constructs contained in this annex are integrated into the EAST-ADL meta-model in a similar way
as timing, dependability, and other non-functional constraints. This means that the behavior
constraints target directly Behavior::Mode, Behavior::FunctionTrigger, Behavior::FunctionBehavior,
and thereby any external behavior models linked by these EAST-ADL definitions.

Depending on the system artifacts under constraint, a behavior constraint can be applied either for
FAA (Functional Analysis Architecture), or for FDA (Functional Design Architecture), or for
environment specification.

©2008-2010 The ATESST2 Consortium 209 (227)

EAST-ADL Domain Model Specification version 2.1

“ehicleFeaturebodeling::
“ehicleFeature

Fealume

+ isCustomerfizsible: Boolean

+ isRemoved: Boolean

+ izDesignvariabilityRationale: Boolzan

Feguiementsrel aionsiio
Requirements::Refine

+refinedRequirementy [1.

Feguwiement Specifcation Oect

® +related\fehicleF aature Requirements::Requiremeant
+ formalizm: String [0..1]
+ url: String [3..1]
EAElenrenmt
BehaviorConsiraint +mode -
EAElement +reprezenthblode T —
+oonstrainedidode Behawvior::Mode n State
0.#|+ condition: String + initState: Boolean = falze
i +mode
+mode
Corntexit
+eonstrainedFunctionBehawior Cantext +unetion T
Eehavior::FunctionBehawior GER{ITTACED
- 0.1 FurmclionMadeling::
o - - X
+ path: String Furcfion Tyos
+ reprezentation: FunctionBehawiorkind
+ isElementan: Boolean
+constrainedFunctionTrigger EAElement +function
Beh=wior:: FunctionTrigger
0.7 0.1
+ triggerCondition: String
+ triggerPolicy: TriggerPolicykind
+targetFunction
+econstrainedErrarBehaviaor EAElement
Erraorbdadsl :ErrorBehanvior

+ failureLagic: String [1..1]
+ type: ErorBehawviarkind

FParameter Constraint

+parameter

1.7

+parameterCondition

EAElemeant
Parameter /

0.1

1
fracezble Specifcation
watpTypen
Dafaf L EADafaE
Fiafypes Fiafyoe o |+pen
EAElement

EAElement

Farameter Condition

+targetFunctionPort

+representfnomaly

watpPrototvpes
FurciiorMedeling. FurcfionPoart

EAElement

watpPrototypes
ErrorModel: Ararraly

+ exprezsion: String

Figure 41. Diagram for dependencies of BehaviorConstraints.

©2008-2010 The ATESST2 Consortium

210 (227)

=

+ generichescription: Sting

EAST-ADL Domain Model Specification version 2.1

+appliedToCondition ®

EAElement
Farameter Condition +preCaonditian
+ expression: String ® +postCondition
+parameterCondition = _+invariantCondition
= +denaote
+oonditionSpecification
Cormbext
. e Farameter Constraint 0.1
Behawior Anne: +appliedToFarametery |/~ 1.7 +zourceParameter
EABlememt 4 - +zinkP arameter
Farareter
+in
1 +out
+parameter
+behaviorConstraint [* T +inOut
1.7
EAElement * bwgrite
BehaviomConsiraint
= +read
+zubStateMachineConstraint ¥
- EAElement
\y +state State
State Machine Constraint Y 17 + initState: Boolean = false
":::]— +fru:-m4\ 1 +t-:-4\ 1
+transition
EAElement
= Transition
+inwoke)=
R ‘ +transtormation = EAElement
Transfor mation

Cormputation Constraint

!

+zubComputationConstraint

+incomingFlaw® |~

+outgoingF lawy |~

+fl o

EAElement

Fliomes

=

t+orderedSegment ©

Figure 42. Diagram for organization in BehaviorConstraints.

29.2

Element Descriptions

29.2.1

BehaviorAnnex (from BehaviorConstraints)

Generalizations

e Context (from Elements)
Attributes

No additional attributes

Associations

©2008-2010 The ATESST2 Consortium

211 (227)

EAST-ADL Domain Model Specification version 2.1

e behaviorConstraint : BehaviorConstraint [*]
Constraints

No additional constraints

Semantics

29.2.2 BehaviorConstraint (from BehaviorConstraints) {abstract}

Generalizations

o EAElement (from Elements)
Description

Behavior constraints specify the behaviors to be fulfilled by a vehicle feature, a system artifact, or
an environment entity. In particular, for system artifacts and environment entities, the behaviors
under constraint include their function behaviors and function triggers.

For functional requirements and operation situations, the introduction of behavior constraints
allows the related textual descriptions in the requirement model to be refined through the existing
requirement refine relationship. The refinements in terms of behavior constraints provide
declarations of behavior elements, including the expected parameters, states and transitions, of
one or multiple functional requirements. This facilitates the analysis and validation of requirements
in regards to the semantics and consistency of textual descriptions, and thereby the reuse and
management of requirements and their implied behaviors.

BehaviorConstraint is an EAElement. It is further specialized by ParameterConstraint,
StateMachineConstraint, and ComputationConstraint.

Attributes
No additional attributes
Associations

¢ relatedVehicleFeature : VehicleFeature [*]
The related vehicle features under constraint. Such vehicle features satisfy the
requirements that are refined by the behavior constraint.

e constrainedMode : Mode [0..*]
The constrained system mode.

e constrainedFunctionBehavior : FunctionBehavior [0..*]
The constrained function behavior.

e constrainedFunctionTrigger : FunctionTrigger [0..*]
The constrained function trigger.

e constrainedErrorBehavior : ErrorBehavior [*]
The error behavior that is defined by a behavior constraint.

Constraints

A behavior constraint references at least one vehicle feature, mode, function behavior, function
trigger, or error behavior definition.

Semantics

Behavior constraints refine textual requirements and provide additional information for defining
and managing behavior information in EAST-ADL and external models.

©2008-2010 The ATESST2 Consortium 212 (227)

EAST-ADL Domain Model Specification version 2.1

29.2.3 ComputationConstraint (from BehaviorConstraints)

Generalizations

¢ BehaviorConstraint (from BehaviorConstraints)
Description

Computation constraints define required computation activities and the paths of quantities across
such activities.

Attributes
No additional attributes
Associations

¢ transformation : Transformation [*]
The required computation activities.

o flow : Flow [*]
The paths of quantities across the required computation activities.

Constraints
A computation constraint contains at least one transformation or one flow definition.
Semantics

Computation constraints refine textual requirements and provide detailed specifications about the
computations to be supported.

29.2.4 Flow (from BehaviorConstraints)

Generalizations

o EAElement (from Elements)
Description

Statement of the paths of quantities in a computation. A flow connecting the input and output
parameters of a system represents an end-to-end flow of the system.

Attributes
No additional attributes
Associations

e sourceParameter : Parameter [1..*]
The beginning of a flow.

e orderedSegment : Flow [*]
The composed subordinate flows with an order of precedence.

e sinkParameter : Parameter [1..*]
The end of a flow.

Constraints
A flow has at least one source and one sink parameter.

Semantics

©2008-2010 The ATESST2 Consortium 213 (227)

EAST-ADL Domain Model Specification version 2.1

A flow specifies the relationship between some parameters (the source) and other parameters (the
sink), where the second group of parameters is a consequence of the first group. It defines the
causality of these parameters.

29.2.5 Parameter (from BehaviorConstraints)

Generalizations

o EAElement (from Elements)
Description

Statement of quantities (e.g., temperature) in the behaviors to be fulfilled by a vehicle feature, a
system artifact, or an environment entity. While input/output parameters target the 1/O ports of
system functions, internal parameters target directly system functions.

Attributes
No additional attributes
Associations

e targetFunctionPort : FunctionPort [0..1]
The corresponding port having the parameter as its input/output parameter.

e targetFunction : FunctionType [0..1]
The system function having the parameter as its internal parameter.

o type : EADatatype [1]
The type of a parameter.

Constraints

Each parameter in the parameter constraints of function behaviors references either one function
type owning such function behaviors or one function port of the same function type.

Semantics

A parameter represents an in-, out-, or local-quantity to be processed. It can describe a piece of
application or event data within an E/E system, or a variable in the environment such as a
monitored/controlled plant variable. Each parameter is typed by an EADataType for specifying the
related meta-information like unit, valid range, required accuracy, etc.

29.2.6 ParameterCondition (from BehaviorConstraints)

Generalizations

e EAElement (from Elements)
Description

Statements of the conditions of individual parameters in relation to the operations of behaviors to
be fulfilled by a vehicle feature, a system artifact, or an environment entity.

Attributes

e expression : String [1]
The description of parameter condition.

Associations

e representAnomaly : Anomaly [*]
The fault(s)/failure(failures) represented by the parameter condition.

©2008-2010 The ATESST2 Consortium 214 (227)

EAST-ADL Domain Model Specification version 2.1

o appliedToParameter : Parameter [*]
The quantity characterized by the parameter condition.

o appliedToCondition : ParameterCondition [*]
The subordinate parameter conditions characterized by the parameter condition.

Constraints
A parameter condition is applied to at least one parameter or one parameter condition.
Semantics

A parameter condition characterizes the particular state of parameter(s) in nominal and erroneous
operating situations. For example, parameter conditions can be used to describe the expected
value ranges of a monitored environmental quantity in specific vehicle control scenarios.

Parameter conditions can be used as a basis for defining the states of parameters or their
combinations (e.g., the establishment of certain input and output mapping, event to output
mapping) during different operation situations.

For a computation behavior, parameter conditions can be used to specify its pre-/post-conditions
and invariants that must be true before, after, and during the execution.

EAST-ADL does not define logic and arithmetic operators for the expressions of parameter
conditions but would support the definitions in future extensions.

29.2.7 ParameterConstraint (from BehaviorConstraints)

Generalizations

¢ BehaviorConstraint (from BehaviorConstraints)
Description

Statement of the expected parameters and parameter conditions in the operations of behaviors to
be fulfilled by a vehicle feature, a system artifact, or an environment entity.

Attributes
No additional attributes
Associations

e parameterCondition : ParameterCondition [*]
The description of parameter conditions.

e parameter : Parameter [1..*]
The expected parameters.

Constraints
No additional constraints
Semantics

Computation constraints refine textual requirements and provide detailed specifications about the
qguantities and their particular conditions in the operation of behaviors.

29.2.8 State (from BehaviorConstraints)

Generalizations

e EAElement (from Elements)

©2008-2010 The ATESST2 Consortium 215 (227)

EAST-ADL Domain Model Specification version 2.1

Description
Statement of state elements in state-machine constraints.
Attributes

¢ initState : Boolean = false [1]
Indicating an initial state when the value is true.

Associations

e representMode : Mode [*]
The Mode(s) that is represented by the state.

¢ subStateMachineConstraint : StateMachineConstraint [*]
The subordinate state machine in the state.

e denote : ParameterCondition [*]
The parameter conditions represented by the state.

Constraints
No additional constraints
Semantics

A state is an element in state-machine description. Each state represents a set of parameter
conditions that are of particular concern in the operations of behaviors to be fulfilled by a vehicle
feature, a system artifact, or an environment entity. A state can also represent a vehicle mode and
thereby provides detailed information about the related parameters and mode transitions.

Within each state, there can be subordinate state-machines. A subordinate state-machine
becomes active if its composite state is active and terminates when the composite state is exited.

29.2.9 StateMachineConstraint (from BehaviorConstraints)

Generalizations

¢ BehaviorConstraint (from BehaviorConstraints)
Description

Statement of state-machine constraints of behaviors to be fulfilled by a vehicle feature, a system
artifact, or an environment entity.

Attributes
No additional attributes
Associations

e transition : Transition [*]
Owned transitions in the state-machine.

e state : State [1..*]
Owned states in the state-machine.

Constraints
No additional constraints
Semantics

State-machine constraints refine textual requirements and provide detailed specifications about
the states of quantities and the state transitions in the operation of behaviors.

©2008-2010 The ATESST2 Consortium 216 (227)

EAST-ADL Domain Model Specification version 2.1

The definition of state-machine constraint follows a generic definition of automata: In one state,
read certain parameter, upon certain parameter condition(s), do certain transformation(s), then go
to another state.

Each state-machine description normally has a set of states and transitions. A state-machine has
a single initial state. Only one state is active during the operation.

29.2.10 Transformation (from BehaviorConstraints)

Generalizations

o EAElement (from Elements)
Description

A transformation defines an expected computation activity on two sets of quantities in terms of
parameters. It describes one set of parameters as a function of other parameters, under the
constraint of pre-, post-, and invariant parameter conditions.

Attributes
No additional attributes
Associations

¢ invariantCondition : ParameterCondition [*]
The parameter conditions that must remain unchanged by the execution of the
transformation.

e subComputationConstraint : ComputationConstraint [*]
The subordinate computation constraint in the transformation.

e inOut : Parameter [*]
The parameters that are used both as inputs and as outputs of the transformation.

e outgoingFlow : Flow [*]
The related outgoing flows from the transformation. The definitions are derived according
to the declarations of flows connected to the output parameters of the transformation.

e out: Parameter [*]
The output parameters of the transformation.

e in: Parameter [*]
The input parameters of the transformation.

e preCondition : ParameterCondition [*]
The parameter conditions that must hold before the transformation can start its execution.

e postCondition : ParameterCondition [*]
The parameter conditions that must hold after the execution of the transformation.

e incomingFlow : Flow [*]
The related incoming flows to the transformation. The definitions are derived according to
the declarations of flows connected to the input parameters of the transformation.

Constraints
[1] A transformation has at least one out or one inOut parameter.
Semantics

Each transformation specifies one computation activity of executing some mathematical functions,
each of which maps two sets of quantities by performing some arithmetic, Boolean- or string-

©2008-2010 The ATESST2 Consortium 217 (227)

EAST-ADL Domain Model Specification version 2.1

related calculations. EAST-ADL does not define expressions of such functions but would support
the definitions in future extensions.

Inside an EAST-ADL function behavior, the execution of transformations follows the run-to-
completion assumption. This means that the execution of a transformation is only possible when
the previous execution instance of the same transformation is fully completed. For a system
function, the amount of time to execute its transformations is constrained by the EAST-ADL
function event in the timing package.

29.2.11 Transition (from BehaviorConstraints)

Generalizations

¢ EAElement (from Elements)
Description

Statement of state transtion elements in state-machine constraints.
Attributes

No additional attributes

Associations

e invoke : Transformation [*]
The transformations to be invoked when the transition is fired.

o to: State [1]
The target state of the transition.

e conditionSpecification : ParameterCondition [0..1]
The parameter condition(s)that must hold to fire the transition.

e write : Parameter [*]
The parameters that will be available when the transition is fired.

e read : Parameter [*]
The parameters that must be available to fire the transition.

o from: State [1]
The source state of the transition.

Constraints
No additional constraints
Semantics

A transition goes from a source state to a target state. A transition can only fire if its source state
is active, its read parameter is available, and the related parameter condition(s) holds. When it is
fired, a transition can invoke certain transformations and write certain parameters (i.e., making
such parameters available).

©2008-2010 The ATESST2 Consortium 218 (227)

EAST-ADL Domain Model Specification version 2.1

30 Index

0! (o | PRSP PTTSTPPPTTP 105
AN (= (o] N 55, 57, 58, 198
AGETIMINGCONSIIAINT.....uueeiii e e et s e e e e e e e eeeet e e e e e e eeeeeeenaes 129, 132, 135
AllOCALEADIEEIEMENT........ceeeeeee e 42,43, 45, 47, 48, 49
YA | (o Y= 11 o 23, 43
WY (o Tox=1 i o] 1 1= o =] SRR 47, 48, 58, 59, 63
ANAlYSISFUNCLONPIOIOLYPE ..ot 22,43, 44
F N b= 1)V] UL od 1 o] o I 1Y o= 22,43, 44, A7
ANAIYSISLEVELcceeiiiiiiiieee 21, 22, 24, 26, 41, 44, 53, 183, 198
ANOMAIY ..o 150, 151, 155, 157, 160, 214
ArDItraryEVENTCONSIIAINTcooiiiiiiiiiiiiee e 130
ArChiteCtUralDESCIIPLIONiiieii e e e e e e e e et e s e e e e e e e eeataeaaeeeeaeeenenes 202, 203
PN o 11 =01 00 [ir=110Y, oo [TR 202, 203
Architecture........cccccoeeeevvii 1,19, 20, 22, 23, 57, 58, 66, 110, 198, 203, 207, 209
ASILKING ... 146, 159, 161, 163
BaSiCSOMWAIEFUNCHONTYPEttt 44, 45
BENAVIOr ..., 52,53,70,71,72,73,74, 75, 76, 199, 209, 212
2T e] oY T A 1= S 211
BehaVIiOrCONSITAINT.......ieeiiie ettt ettt et e e e et e et e et e et e et e eaneeanes 212, 213, 215, 216
=TT o T 1 T U= PSPPSR 26, 30, 90
BiNAINGTIMEKING ...ttt 27
BUSINESSOPPOITUNILY ...ttt 203, 204
3 - 0 166, 167, 169
(01 P10 0] 0100 o1 T=T o1 (o LSRR 67, 68, 88, 91
O[T 1 ST=1 RYL=1 8 ST [T 45, 49, 56
@0 1101 218131 | 185, 186, 189
CommMUNICAIONHAIAWAIEPINceeieiie ettt et et et e e e et s et e et e eaeees 58, 59, 198
(070 ga] Lo 1] [(=] D= 1= 11 o L= P 51,176, 177, 198
ComputatioNCONSIFAINT........euiiiii e e e e e e e e e e e e e eerara s e e eaaeeeannes 212, 213, 217
(7o) o] o] F PSPPSRI 164, 202, 203, 204, 207
ConfigurableCONtAINEYvuiiiie e e e 81, 82, 86, 87, 88, 90
ConfiguratioNDECISIONcuuieiiii e e e e ettt s e e e e e e eaaat e e e e eaeaeesanes 30, 82, 83, 84
ConfiguratioNDECISIONFOIAEYccceiieeeeie e e e e e e e e e e e e 84, 85
ConfigurationDeciSIONMOAEL.............ooevviiiiiiiieeiei e, 81, 82, 83, 84, 85, 86, 87, 91

©2008-2010 The ATESST2 Consortium 219 (227)

EAST-ADL Domain Model Specification version 2.1

ConfigurationDecCiSIONMOAEIENTIYouviiiiiii e e e e 82, 84, 85
(o] gl =] o 1=T £ @fo] a1 iTe [U] =1 1o o [USSP 86

Context21, 22, 23, 24, 32, 33, 52, 59, 68, 71, 72, 89, 99, 101, 112, 117, 126, 143, 173, 186, 190,
191, 211

ControllabilityClasSKINGuuiii e e e e e e e e e e ra 142, 146
LO3Y =T 0o Lo L= 1Y/ o 1= PP 125, 126
DelayCoNnStraint..........uiii i 129, 130, 131, 133, 134, 135
Dependabilityeuveiiieeiiiie e 140, 141, 142, 143, 144, 145, 146, 147, 200
DENVEREQUINEMENTeii e e e e e e e e e e e e e e e rr e eeaes 94, 95, 96, 198
DesignNFUNCONPIOIOLYPE . ..o 23, 45, 46, 48, 54, 55, 124
(D 1STS (o o] U g od 1T0] o 1 1Y o L= PR 44, 45, 46, 54, 124
DESIGNLEVEL ..cceeeiiiiiiieee et 22,23, 24, 41, 46, 53, 54, 172, 173, 183, 198
DevelopmentCategoryKING...........iii i e e e e e 143, 144, 147
DV A DN A TIOULESELttt ettt et et e e e e e e e e e e e e e eennns 36, 37, 39
DEVIatioONPEIMISSIONKING. ...ttt ettt e e e et e et e et e et e e e e eae e e reaarenareraeenees 37, 38
Y=o Yo] [=T= 1o [P TTRTRT 177, 198

EADatatype30, 50, 51, 55, 143, 150, 151, 155, 156, 157, 160, 176, 177, 178, 179, 180, 181, 182,
194, 198, 214

EADAtatYPEPIOtOIYPE ..o e 30, 55, 160, 176, 178
EADITECHONKINGeee et ettt e e e e e e 46, 47, 50, 56, 61

EAElement26, 29, 30, 36, 43, 47, 49, 51, 52, 55, 59, 60, 61, 62, 63, 67, 74, 75, 81, 84, 85, 88, 90,
91, 98, 99, 104, 116, 125, 127, 150, 151, 152, 156, 163, 178, 180, 186, 187, 189, 190, 194, 195,
201, 212, 213, 214, 215, 217, 218

Y o T SO SUPPPRERRR 178, 198
e =T =T 179, 199
EAPGCKAQJEot a e e e 187, 188
EAPackageableElement.............oiiiiiiii e, 48, 147, 186, 187, 191, 194
N 11T OO SSUPUPRERRR 179, 199
EAXIMIL ..ttt ettt e ettt e e e e e e e et e e e e e e e e ————tttaae e e e e e nn—taettaaeeaaaannnnaraaaeaeeeaannrranes 188

Enumeration27, 34, 38, 45, 47, 61, 63, 64, 73, 76, 97, 139, 142, 144, 147, 150, 152, 159, 168,
172, 176, 180, 181, 199

L L [T = (] I (<1 = | T 180, 199
ENUMEratioNValUBTYPE ... ettt e e e e e e e e e eeeas 180, 181, 199
L LYo] 10 =] P TTTPI 20, 67, 68
[0T =T =] aT= 1Y/ (0] ST 149, 151, 152, 154, 212
oY =11 a =1 Y4[01 8 5T 1 o [T 151, 152
=T o] 1Y/ oo (o] 1 o] (0] 3] L= 2 152, 153, 154
[T o] 1Y oTo [T Y/ o1 TSR 143, 151, 152, 153, 154, 155, 156

©2008-2010 The ATESST2 Consortium 220 (227)

EAST-ADL Domain Model Specification version 2.1

EVENL....oiiiiiiee e 121, 122, 123, 128, 129, 130, 132, 133, 137, 138, 139
V<] 01 (O o T o TR 122, 123, 131, 133, 134
V2] 01 (o] 1] 1 =11 TR 130, 132, 134, 135, 136
AT a1 U] aTex (] o T 74, 137, 138
T oL N Tot 1 (o] g [0 11T o1 6ST=T V=T o AR 138
EventFunctionClentServerPOIKING e eiiiieiiieiiiiiiieeaeeeeeeeeeeeeeeeeeeeeeee e 138
(V=T oL T aTes (] 1 i [0111Y/ nd o AT 138, 139
EXECULIONTIMECONSIITAINT ..evuiitieeeee ettt et e et et et e e e e e et e e e e e e e e s eenreenreenrernns 65, 123, 124
0T 151018 F= 11 (T T P 144, 146
A (] o IR 106, 108
(ST S (] 1 md 01 0L AT 106, 107, 108
Y| [U T (=Y @ LU} {20 o TR 151, 154, 155, 157
(o0 L= 11 (U (TR 143, 160, 161
(o U LU= T (U (=] 0] o TR 155, 156
FaultFailurePropagationLinKcc..cceiiiieiiiiiee e e e e e e e e e e e eaeaaas 154, 156
FAUIINPOIT .ottt e e e e e e e e e e e e e e e e e st anenaaaeeeaeanns 151, 154, 156, 157
T LU] T PPEPRR S 20, 29, 30, 31, 32, 33, 38, 39, 83, 189
FeatureCoNfigUIatiON............ooiiiiiiii e e e 85, 86, 87, 90
[T LU L] O 0T A1 (= 1] | AR 30, 33
[T LU L= P\ TSR 143, 145, 146
ST LU | (=T 1 (o 11 o P 31, 33
FAIUINELINK .ot 30, 31, 32, 33, 34, 35
FeatureModelueviiieeiiiiiiiiee e 24, 29, 32, 33, 37, 81, 83, 86, 87, 89, 92
FRAIUINETIEEINOUEttt e e e 29, 30, 31, 33, 34
0O SSPUPPRERRR 213, 217
FOIMUIGEXPIESSION ...uuiiiieeeieeeeecee e e e e ettt e e e e e e e e e ettt e e e e e e e e e eas et e e aeeaeeeesrraanans 89, 188
[l aToa (o] g T=11 B ISNY o TP 47,52, 68, 195
[l aToa [o] a VAN 1 [o]o7= 1 1 o] o [T 43, 47, 50, 199
FunctionalSafetyCONCEPLoeeeeiiie e 143, 162, 163, 164
FUNCLIONBENAVIOTvvviieeeeeiciiiiiee e 44,53, 70, 72, 73, 74, 75, 199, 209, 212
U aTo fe] 0] =Y g F=AYi0] ST Lo TP 70,72,73
T gToa [o] g 1@ =]) ST =T AV =T A 1 a1 (=] = o] < PR 48, 49, 55
FUNCHONC ENESEIVEIPOIT ...ttt e e et e e aaeans 45, 48, 49, 56, 138
[T aToa {[0] a1@fa] o] aT=To1 £] SH T 48, 49, 50, 53, 88, 91, 199
FUNCHONFIOWPOIT ..ttt ettt et e e e e e e e eans 50, 51, 56, 75, 139
[T Tod (o] 0| o] £ SO 48, 49, 50, 51, 53, 56, 68, 75, 88, 91, 155, 214
[U Te (o] g1 =01V =] o] 51, 52

©2008-2010 The ATESST2 Consortium 221 (227)

EAST-ADL Domain Model Specification version 2.1

FunctionPrototypec..c..... 43, 45, 50, 52, 68, 74, 75, 81, 88, 90, 91, 124, 125, 138, 153, 199
(o (o] 0 8 I T o = O 52,53, 70, 72, 73, 74, 75, 137, 209, 212
FunctionType 33, 44, 46, 50, 52, 53, 72, 73, 74, 75, 81, 82, 91, 124, 138, 154, 199, 214
(=T LT A (o1 @01 1S 1 = U1 | T 171, 172,173, 174
(=T o LT g [o1 @ 0] 1Sy 1= 11 11 ST (o [T 171, 172
GENEITICC ONSITAINTSEL ...ttt 173
L0 10 | o 1 166, 167, 169
HardwareComponentProtOtyPeccoeeeevivieeiiiiiii e 23, 48, 59, 60, 88, 91, 153, 199
HardwareComponNentTYPEccuvvuiiiieeeieieeiiiee e et e e 54, 58, 59, 64, 65, 66, 82, 154
[E L0 Y=Y (1O 0T 1| T=Tox (o] PR 60, 63
Hardwar€FUNCHONTYPE ... oo e e e e e e e e et ee e e e e e e e e e e ettt e e e eeaeeserrraannans 52,54
[E= L0 VY=Y (=] [TR 58, 60, 61, 62, 65, 156
HardwarePiNDIr@CHONKINGuuuuuuueieiuiittiiieiiieeeieeeeeeeeaeeaeeeeeeeee e eesesseessssssssssessessssssnsssnnnns 61
[FE L0 YT = T LT (o U o F USRS 60, 62
[Fo V2 T o P PEPRRPP 141, 143, 145, 146, 147, 200
HAZATAOUSEVENT ... e ettt ettt et r e e e e et e et e e e eeaeenees 143, 146, 147, 163, 200
Identifiable................ 81, 82, 84, 88, 89, 90, 104, 113, 116, 153, 167, 172, 174, 186, 187, 188, 190
IMPIEMENTALIONLEVENeeei et e e e e e e e e e 21, 23, 24
[Lo [Lo [T 107, 108
INPULSYNChroNiZatioNCONSIIAINT.........iii i e e e et eeeeeaanees 132, 133
INEEINAIBINAING ... e e e et e e e e e e e e ar e 81, 85, 86, 87
INEErNAIFAUIPTIOIOLYPE .. e e e e e e e 151, 154, 157
@] o F= 1o V=1 (=] = [DT 62, 200
IOHAIAWAIEPINKING. e e e e et 62, 63
4= 0 0 S PREPER 143, 145, 147, 163
LifECYCIESTAgEKING. e e e e e 167, 168
e Tor= 1| BTy ol 1Y F= T g =T = 22,54, 55, 195
[0 [o= 11 =T SRS 60, 63, 64
(oo [o= 11 =10 RS Q] o PSS 63, 64
LY 1S3 o T 204, 207
1Y 0T [70, 72,73, 75, 76, 99, 127, 146, 163, 172, 209, 212, 216
1Y/ To o [T] (0] o ST 72,76
MU L EVEIR B OIENCE ... ee et e ettt ettt et ettt et e et e e e e e e e e eens 188, 189
1N 0T [P EERPP 64, 65, 172, 200
(@ 0= = [] J 48, 55
OPeratioNalSITUALIONoeeeeiee e e e e et e e e e e e e e eeaet e e e aeeeeenees 96, 101, 146
OutputSyNchronizatioNCONSIFAINTuuuuiiiiiiiiiiei e 133, 134

©2008-2010 The ATESST2 Consortium 222 (227)

EAST-ADL Domain Model Specification version 2.1

[T 7= 1 0[S (=] T 133, 134, 213, 214, 215, 217, 218
ParameterCONItIONvve ettt et r e et r e e e s eareaeeeaarerreearernees 214, 215, 216, 217, 218
[T =Y ALY (=] (L0] A1) = 11 | AR 212, 215
L ES g] V=T 1 (@0 411 (=] | AN 134
S g o (ol V=T o1 (@] 4 1] (=] | N 135
[0 (] 1 o RSP 53, 55, 56, 200
oMY g Fo T 0 LT z= T =Y o o T 65, 200
oY T ST U] o] o] PSSP 65, 66, 200
ol (STesTo [Lot O]) £ =11 ST 124, 125, 200
ANV 1 (=] O 0T 1 (<Y 1 PR 81, 88
(ol (0] o] (ST 0 I r= 1 =] 1 1 =] 0| AT 204, 205, 207
ProcesSFaUtPIOIOIYPEo 151, 154, 157
[(o [0 To1d = o =11 o] 1o PSSP 204, 205
(@ 1= 11107 = To U T=] 1= | SR 96, 97
QualityReqUIremMENTKING.uuuii e e e e e e e e e e e e e et e s e e eeeeeeeartaaasaeeaeeesnnnes 97
QuantitativeSafetyCONSIIAINT............ooiiiiiiii e e e e e e eaaees 143, 160, 161
RANGEADIEDAIALYPE. .. uu e 178, 179, 181, 182
RANGEADIEVAIUETYPE ... e e e e e e e e e e e e e e re e e e eaes 181, 182, 200
RALONAIEceieieiiiiiee et 122,123, 130, 131, 138, 167, 169, 189
REACTIONC ONSIIAINT ettt e e et e et et e e et e e e e e e e e enaaenaees 133, 135
REANZALIONeeeeeiieiiiee et e e e e e e e e e e e 23, 47, 124, 177, 189, 190, 201
(R ET0 LY TR 1 o] (<Y = (=T 0 1 1= o TR 107, 108
=] TSR UOPPUPSERPR 94, 98, 127, 172, 201
RelationShipcocvviiiiiieee e 31, 103, 106, 107, 108, 186, 188, 189, 190, 191

Requirement19, 94, 95, 96, 98, 99, 100, 101, 102, 103, 104, 112, 117, 127, 145, 162, 163, 164,
172, 190, 192, 198, 201

RequirementsCOoNtaiNercuvviieiiieeeiieeeeee e 99, 100, 101, 102, 118, 162, 163, 201
LT |81 =T a1 o] £ N PSSR 100, 103
ReqUIrEmMENISMOENot e e e e e ettt a e e e e e e e e eeaetn e e e eeeens 101
RequirementSpecificationObJeCtoouiiiiiiiiei e 98, 99, 100, 101, 102, 118
RequirementsRelatedINfOrmMation............oouui e 102
RequiremMentSREIAtIONGIOUPuii et e e e e e e et a e e e e e e e e eeeeenaaaeeeaeas 102
RequirementsRelationshipooiiiiiiii e 95, 98, 100, 101, 103, 112, 146
REUSEM LA N OIMAION ...ttt ettt ettt et et et e e e e e e s e e e e e eenaenns 88, 89, 90
N T USRS PPPSERRR 117, 118
RIFEXPOITATEE ... ettt e ettt e ettt s e e ettt e e et et e e e e eta e e e etb e eaerbnnns 118
RIFIMPOITATEE. ...ttt ettt e e e e et e e e e e e e et e e e e e e s st e e e e e e e nnnnnaaneeeees 118

©2008-2010 The ATESST2 Consortium 223 (227)

EAST-ADL Domain Model Specification version 2.1

SaAfEIYCASE. ..ot 143, 165, 166, 167, 168, 169
S F= 1511071 @10] 4153 1= 1| S 143, 161
SAfEtYGOAIo 143, 162, 163, 164, 201
ST L1 3V ER PSPPI 94, 99, 103, 104, 201
Y1 [<Tex 10] (O 1 =T 0] I 84, 89
=] 11 0] 55, 66, 201
Y=LY= €141 @ Fo 7]] o S 146, 147
SPOradiCEVENTCONSIIAINT.......uiiii e e e e e e e e e e e et a s e e e e e e eaasaaaaaeeeaaeeannees 136
] =1 =] 10 [0 (= T 202, 205, 206, 207
SEAKENOIAEINEEAttt nnnnen 207
] - L= P ERRRR 215, 216, 218
) PN (1Y F= 1o a1 AT O]) A =11 | AT 212, 216
S (=] 12 PSP PUPPPPRRRRR 19, 20, 21, 23, 117
SYStEMMOAE ... 21, 23, 24, 33, 67, 68, 167, 201, 203, 204
B LG R e L O o] 1o = UL | PP 173, 174
TechniCalSafEtyCONCEPLuui e e e et e e e e e e e e arraaas 143, 163, 164
TIMEDUIAtION......cevieeeeiiiiiiiiiie e 124, 125, 127, 130, 131, 132, 133, 134, 135, 136
Timingcccve.... 19, 46, 70, 120, 121, 122, 123, 124, 125, 126, 127, 130, 132, 137, 138, 139, 200
TiMINGCONSIIaINtccooiiiiiiiiee e 123, 124, 126, 127, 130, 131, 132, 133, 134
TIMINGDESCIIPLON ... e e e e e e bt e e e e e e e e aanaaaas 122, 126, 127

TraceableSpecification76, 88, 96, 99, 101, 102, 105, 108, 113, 114, 115, 116, 145, 146, 153, 160,
161, 166, 167, 168, 169, 171, 177, 186, 190, 191, 203, 204, 205, 206, 207

TTANSTOIMALION .. ettt ettt et ettt e e e e e e e r e e e 213, 217, 218
L= LS00 o NPT 216, 218
THQQEIPONCYKINGot e e e e e e rr e e e e 74,76, 77
USECASE ..eeiiiieeeeiiiiiiie e e e e e e e et e e e e e e st ea e e e e e e e e nnnnneees 101, 103, 104, 105, 106, 107, 108, 146
USerAttHibUtEaDICEICMENTo 186, 192, 193, 195
USErAIDULED EIINITION ...eeeeeee ettt et e e e e e e enaeens 192, 194, 195, 196
UserAttribUte EIementTYPE ..o 100, 118, 194, 195, 196
USEIANDUIEVAIUEeeeieeeee et 32,192, 193, 194, 195, 196
RV 2= LU= 8] = SRR UOPUPPPRERR 181, 182, 183
Variability.........cccvveeeeeeeiiiiiieee e 25, 26, 27, 28, 78, 79, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91
VariabilityDependenCyKING...........oou e 32,34,91
AV 14Tz o1 (=] =T 4 =] 0 TP 81, 88, 90, 91
RV £z T E= 11 o € (o 11| o T 34, 35, 82, 91
VENICIEFEALUIEeeeeeiee ettt e e e e e e 20, 33, 37, 38, 39, 40, 147, 212
VENICIEBLEVEL ... 24, 25, 33, 39, 40, 89, 91

©2008-2010 The ATESST2 Consortium 224 (227)

EAST-ADL Domain Model Specification version 2.1

VehicleLevelConfigurationDecCiSIONMOEL............cooiiiiiiiiiiicce e 90, 91
V=] g1 To3 (RS V] (] o PP 207
VerificationValidationooeveeieeeeee e 110, 111, 112, 113, 114, 115, 116, 201
RV 2SS 94,112, 201
AV AV AN (U =1 (@101 (70] 1 [T 112, 113, 115, 124, 127, 172
LYY 02 1 PSR PPPPPPRRRR 112,113, 114, 115, 201
AV AV AT (=T [0 [=T0 (@101 (oT0] s o =TT 113, 114, 115, 127, 172
LY A4 oo PRSPPI 113, 114
AV AV ad (1o 11| (YT 110, 112, 113, 115, 116
BT AV 25 111 0 T PRSI 113, 114, 115, 116
KT AV 1= U o[SRR 112,113,114, 116
RV Y = T o | N 166, 168, 169

©2008-2010 The ATESST2 Consortium 225 (227)

